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Abstract. This manuscript presents the updated version of the Neural
Network Verification (NNV) tool. NNV is a formal verification software
tool for deep learning models and cyber-physical systems with neural
network components. NNV was first introduced as a verification frame-
work for feedforward and convolutional neural networks, as well as for
neural network control systems. Since then, numerous works have made
significant improvements in the verification of new deep learning mod-
els, as well as tackling some of the scalability issues that may arise when
verifying complex models. In this new version of NNV, we introduce
verification support for multiple deep learning models, including neural
ordinary differential equations, semantic segmentation networks and re-
current neural networks, as well as a collection of reachability methods
that aim to reduce the computation cost of reachability analysis of com-
plex neural networks. We have also added direct support for standard
input verification formats in the community such as VNNLIB (verifica-
tion properties), and ONNX (neural networks) formats. We present a
collection of experiments in which NNV verifies safety and robustness
properties of feedforward, convolutional, semantic segmentation and re-
current neural networks, as well as neural ordinary differential equations
and neural network control systems. Furthermore, we demonstrate the
capabilities of NNV against a commercially available product in a collec-
tion of benchmarks from control systems, semantic segmentation, image
classification, and time-series data.
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1 Introduction

Deep Learning (DL) models have achieved impressive performance on a wide
range of tasks, including image classification [13, 24, 44], natural language pro-
cessing [15, 25], and robotics [47]. Recently, the usage of these models has ex-
panded into many other areas, including safety-critical domains, such as au-
tonomous vehicles [9, 10, 85]. However, deep learning models are opaque sys-
tems, and it has been demonstrated that their behavior can be unpredictable
when small changes are applied to their inputs (i.e., adversarial attacks) [67].
Therefore, for safety-critical applications, it is often necessary to comprehend
and analyze the behavior of the whole system, including reasoning about the
safety guarantees of the system. To address this challenge, many researches
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have been developing techniques and tools to verify Deep Neural Networks
(DNN) [4, 6, 22, 39, 40, 48, 55, 64, 65, 77, 83, 84, 86, 87], as well as learning-enabled
Cyber-Physical Systems (CPS) [3,8,12,23,26,34,35,38,50,51]. It is worth not-
ing that despite the growing research interest, the verification of deep learning
models still remains a challenging task, as the complexity and non-linearity of
these models make them difficult to analyze. Moreover, some verification meth-
ods suffer from scalability issues, which limits the applicability of some existing
techniques to large-scale and complex models. Another remaining challenge is the
extension of existing or new methods for the verification of the extensive collec-
tion of layers and architectures existing in the DL area, such as Recurrent Neural
Networks (RNN) [37], Semantic Segmentation Neural Networks (SSNN) [58] or
Neural Ordinary Differential Equations (ODE) [11].

This work contributes to addressing the latter challenge by introducing ver-
sion 2.0 of NNV 3 (Neural Network V erification)4, which is a software tool
that supports the verification of multiple DL models as well as learning-enabled
CPS, also known as Neural Network Control Systems (NNCS) [80]. NNV is a
software verification tool with the ability to compute exact and over-approximate
reachable sets of feedforward neural networks (FFNN) [75,77,80], Convolutional
Neural Networks (CNN) [78], and NNCS [73, 80]. In NNV 2.0, we add verifica-
tion support of 3 main DL models: 1) RNNs [74], 2) SSNNs (encoder-decoder
architectures) [79], and 3) neural ODEs [52], as well as several other improve-
ments introduced in Section 3, including support for The Verification of Neu-
ral Networks Library (VNNLIB) [29] and reachability methods for MaxUnpool
and Leaky ReLU layers. Once the reachability computation is completed, NNV
is capable of verifying a variety of specifications such as safety or robustness,
very commonly used in learning-enabled CPS and classification domains, respec-
tively [50, 55]. We demonstrate NNV capabilities through a collection of safety
and robustness verification properties, which involve the reachable set computa-
tion of feedforward, convolutional, semantic segmentation and recurrent neural
networks, as well as neural ordinary differential equations and neural network
control systems. Throughout these experiments, we showcase the range of the ex-
isting methods, executing up to 6 different star-based reachability methods that
we compare against MATLAB’s commercially available verification tool [69].

2 Related Work

The area of DNN verification has increasingly grown in recent years, leading
to the development of standard input formats [29] as well as friendly competi-
tions [50, 55], that help compare and evaluate all the recent methods and tools
proposed in the community [4,6,19,22,31,39–41,48,55,59,64,65,77,83,84,86,87].
However, the majority of these methods focus on regression and classification
tasks performed by FFNN and CNN. In addition to FFNN and CNN verification,
Tran et al. [79] introduced a collection of star-based reachability analysis that

3 Code available at: https://github.com/verivital/nnv/releases/tag/cav2023
4 Archival version: https://doi.org/10.24433/CO.0803700.v1
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also verify SSNNs. Fischer et al. [21] proposed a probabilistic method for the ro-
bustness verification of SSNNs based on randomize smoothing [14]. Since then,
some of the other recent tools, including Verinet [31], α,β-Crown [84, 87], and
MN-BaB [20] are also able to verify image segmentation properties as demon-
strated in [55]. A less explored area is the verification of RNN. These models
have unique ”memory units” that enable them to store information for a period
of time and learn complex patterns of time-series or sequential data. However,
due to their memory units, verifying the robustness of RNNs is challenging. Re-
cent notable state-of-the-art methodologies for verifying RNNs include unrolling
the network into an FFNN and then verify it [2], invariant inference [36,62,90],
and star-based reachability [74]. Similar to RNNs, neural ODEs are also deep
learning models with ”memory”, which makes them suitable to learn time-series
data, but are also applicable to other tasks such as continuous normalizing flows
(CNF) and image classification [11, 61]. However, existing work is limited to a
stochastic reachability approach [27,28], reachability approaches using star and
zonotope reachability methods for a general class of neural ODEs (GNODE)
with continuous and discrete time layers [52], and GAINS [89], which leverages
ODE-solver information to discretize the models using a computation graph that
represent all possible trajectories from a given input to accelerate their bound
propagation method. However, one of the main challenges is to find a framework
that is able to verify several of these models successfully. For example, α,β-
Crown was the top performer on last year’s NN verification competition [55],
able to verify FFNN, CNN and SSNNs, but it lacks support for neural ODEs or
NNCS. There exist other tools that focus more on the verification of NNCS such
as Verisig [34, 35], Juliareach [63], ReachNN [17, 33], Sherlock [16], RINO [26],
VenMas [1], POLAR [32], and CORA [3,42]. However, their support is limited
to NNCS with a linear, nonlinear ODE or hybrid automata as the plant model,
and a FFNN as the controller.

Finally, for a more detailed comparison to state-of-the-art methods for the
novel features of NNV 2.0, we refer to the comparison and discussion about
neural ODEs in [52]. For SSNNs [79], there is a discussion on scalability and
conservativeness of methods presented (approx and relax star) for the different
layers that may be part of a SSNN [79]. For RNNs, the approach details and
a state-of-the-art comparison can be found in [74]. We also refer the reader to
two verification competitions, namely VNN-COMP [6,55] and AINNCS ARCH-
COMP [38,50], for a comparison on state-of-the-art methods for neural network
verification and neural network control system verification, respectively.

3 Overview and Features

NNV is an object-oriented toolbox developed in MATLAB [53] and built on top
of several open-source software, including CORA [3] for reachability analysis
of nonlinear ordinary differential equations (ODE) [73] and hybrid automata,
MPT toolbox [45] for polytope-based operations [76], YALMIP [49] for some op-
timization problems in addition to MATLAB’s Optimization Toolbox [53] and
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GLPK [56], and MatConvNet [82] for some convolution and pooling operations.
NNV also makes use of MATLAB’s deep learning toolbox to load the Open Neu-
ral Network Exchange (ONNX) format [57, 68], and the Hybrid Systems Model
Transformation and Translation tool (HyST) [5] for NNCS plant configuration.

NNV consists of two main modules: a computation engine and an analyzer,
as illustrated in Figure 1. The computation engine module consists of four com-
ponents: 1) NN constructor, 2) NNCS constructor, 3) reachability solvers, and
4) evaluator. The NN constructor takes as an input a neural network, either
as a DAGNetwork, dlnetwork, SeriesNetwork (MATLAB built-in formats) [69],
or as an ONNX file [57], and generates a NN object suitable for verification.
The NNCS constructor takes as inputs the NN object and an ODE or Hybrid
Automata (HA) file describing the dynamics of a system, and then creates an
NNCS object. Depending on the task to solve, either the NN (or NNCS) ob-
ject is passed into the reachability solver to compute the reachable set of the
system from a given set of initial conditions. Then, the computed set is sent
to the analyzer module to verify/falsify a given property, and/or visualize the
reachable sets. Given a specification, the verifier can formally reason whether
the specification is met by computing the intersection of the define property
and the reachable sets. If an exact (sound and complete) method is used, (e.g.,
exact-star), the analyzer can determine if the property is satisfied or unsatisfied.
If an over-approximate (sound and incomplete) method is used, the verifier may
also return ”uncertain” (unknown), in addition to satisfied or unsatisfied.
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Fig. 1: An overview of NNV and its major modules and components.

3.1 NNV 2.0 vs NNV

Since the introduction of NNV [80], we have added to NNV support for the
verification of a larger subset of deep learning models. We have added reacha-
bility methods to verify SSNNs [79], and a collection of relax-star reachability
methods [79], reachability techniques for Neural ODEs [52] and RNNs [74]. In
addition, there have been changes that include the creation of a common NN
class that encapsulates previously supported neural network classes (FFNN and
CNN) as well as Neural ODEs, SSNNs, and RNNs, which significantly reduces
the software complexity and simplifies user experience. We have also added direct
support for ONNX [57], as well as a parser for VNN-LIB [29], which describes
properties to verify of any class of neural networks. We have also added flexibility
to use one of the many solvers supported by YALMIP [49], GLPK [56] or lin-
prog [70]. Table 1 shows a summary of the major features of NNV, highlighting
the novel features.
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Table 1: Overview of major features available in NNV. Links refer to relevant
files/classes in the NNV codebase. BN refers to batch normalization layers, FC to
fully-connected layers, AvgPool to average pooling layers, Conv to convolutional
layers, and MaxPool to max pooling layers.

Feature Supported (NNV 2.0 additions in blue)

Neural Network Type FFNN, CNN, NeuralODE, SSNN, RNN

Layers MaxPool, Conv, BN, AvgPool, FC, MaxUnpool, TC, DC, NODE

Activation functions ReLU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Nonlinear ODE, HA, Continuous & Discrete Time

Set Representation Polyhedron, Zonotope, Star, ImageStar

Star Reach methods exact, approx, abs-dom, relax-range, relax-area, relax-random, relax-bound

Reachable set visualization Yes, exact and over-approximation

Verification Safety, Robustness, VNNLIB

Miscellaneous Parallel computing, counterexample generation, ONNX*

*ONNX was partially supported for feedforward neural networks through NNVMT. Support has
been extended to other NN types without the need for external libraries.

Semantic Segmentation [79]. Semantic segmentation consists on classify-
ing image pixels into one or more classes which are semantically interpretable,
like the different objects in an image. This task is common in areas like per-
ception for autonomous vehicles, and medical imaging [71], which is typically
accomplished by neural networks, referred to as semantic segmentation neural
networks (SSNNs). These are characterized by two major portions, the encoder,
or sequence of down-sampling layers to extract important features in the input,
and the decoder, or sequence of up-sampling layers, to scale back the data infor-
mation and classify each pixel into its corresponding class. Thus, the verification
of these models is rather challenging, due to the complexity of the layers, and the
output space dimensionality. We implement in NNV the collection of reachabil-
ity methods introduced by Tran et al. [79], that are able to verify the robustness
of a SSNNs. This means that we can formally guarantee the robustness value for
each pixel, and determine the percentage of pixels that are correctly classified
despite the adversarial attack. This was demonstrated using several architectures
on two datasets: MNIST and M2NIST [46]. To achieve this, additional support
for transposed and dilated convolutional layers was added [79].

Neural Ordinary Differential Equations [52]. Continuous deep learning
models, referred to as Neural ODEs, have received a growing consideration over
the last few years [11]. One of the main reasons for their popularity is due to their
memory efficiency and their ability to learn from irregularly sampled data [61].
Similarly to SSNNs, despite their recent popularity, there is very limited work
on the formal verification of these models [52]. For this reason, we implemented
in NNV the first deterministic verification approach for a general class of neu-
ral ODEs (GNODE), which supports GNODEs to be constructed with multiple
continuous layers (neural ODEs), linear or nonlinear, as well as any discrete-time
layer already supported in NNV, such as ReLU, fully-connected or convolutional
layers [52]. NNV demonstrates its capabilities in a series of time-series, control
systems and image classification benchmarks, where it significantly outperforms



6 Manzanas Lopez et al.

any of the compared tools in the number of benchmarks and architectures sup-
ported [52].

Recurrent Neural Networks [74]. We implement star-based verification
methods for RNNs introduced in [74]. These are able to verify RNNs with-
out unrolling, reducing accumulated over-approximation error by optimized re-
laxation in the case of approximate reachability. The star set is an efficient
technique in the computation of RNN reachable sets due to its advantages in
computing affine mapping, the intersection of half-spaces, and Minkowski sum-
mation [74]. A new star set representing the reachable set of the current hid-
den state can be directly and efficiently constructed based on the reachable
sets of the previous hidden state and the current input set. As proposed in
verifying FFNNs [7,77,78], CNNs [72], and SSNNs [79], tight and efficient over-
approximation reachability can be applied to the verification of ReLU RNNs. The
triangular over-approximation of ReLU enables a tight over-approximation of the
exact reachable set, preventing exponentially increasing the number of star sets
during splitting. Estimation of the state bound required for over-approximation
can compute state bounds without solving LPs. Furthermore, the relaxed ap-
proximate reachability estimates the triangle over-approximation areas to opti-
mize the ranges of state by solving LP optimization. Consequently, the extended
exact reachability method is 10× faster, and the over-approximation method is
100× to 5000× faster than existing state-of-the-art methods [74].

Zonotope pre-filtering star set reachability [78]. The star-based reacha-
bility methods are improved by using the zonotope pre-filtering approach [7,78].
This improvement consists on equipping the star set with an outer-zonotope,
on the reachability analysis of a ReLU layer, to estimate quickly the lower and
upper bounds of the star set at each specific neuron to establish if splitting may
occur at this neuron without the need to solve any LP problems. The reduction
of LP optimizations to solve is critical for the scalability of star-set reachability
methods [77]. For the exact analysis, we are able to avoid the use of the zonotope
pre-filtering, since we can efficiently construct the new output set with one star,
if the zero point is not within the set range, or the union of 2 stars, if the zero
point is contained [78]. In the over-approximation star, the range information is
required to construct the output set at a specific neuron if and only if the range
contains the zero point.

Relax-star Reachability [79]. To tackle some of the scalability problems that
may arise when computing the reachable set of complex neural networks such as
SSNNs, a collection of four relaxed reachability methods were introduced [79].
The main goal of these methods is to reduce the number of Linear Programming
(LP) problems to solve by quickly estimating the bounds or the reachable set,
and only solving a fraction of the LP problems, while over-approximating the
others. The LPs to solve are determined by the heuristics chosen, which can be
random, area-based, bound-based, or range-based. The number of LPs is also
determined by the user, who can choose from 0% to 100%. The closer to 100%,
the larger number of LPs are skipped and over-approximated, thus the reachable
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set tends to be a larger over-approximation of the output, which significantly
reduces the computation time [79].

Other updates. In addition to the previous features described, there is a set
of changes and additions included in the latest NNV version:

- Activation Functions. The star set method is extended to other classes of
piecewise activation functions such as saturating linear layer (satlin), saturating
linear symmetric layer (satlins), and leaky ReLU. The reachability analysis of
each of these functions can be performed similarly to ReLU layers using the
zonotope pre-filtering method to find where splits happen.

- LP solver. We generalize the use of LP solvers across all methods and
optimizations. We allow the user to select the solver to use, which can choose
between GLPK [56], linprog [70] (MATLAB’s Optimization Toolbox) or any of
the solvers supported by YALMIP [49]. We select linprog as the default solver,
while keeping GLPK as a backup. However, if a different solver is selected that
is supported by YALMIP, our implementation of the LP solver abstraction also
supports this selection for any reachability method.

- Standard Input Formats. In the past few years, the verification community
has been working to standardize formats across all tools to facilitate comparison
among them. We have improved NNV by replacing the NNVMT tool [81] with a
module to load ONNX [57] networks directly from MATLAB, as well as adding
support for VNNLIB [29] files to define NN properties.

4 Evaluation

The evaluation is divided into 4 sections: 1) Comparison of FFNN and CNN
to MATLAB’s commercial toolbox [53, 69], 2) Reachability analysis of Neural
ODEs [52], 3) Robustness Verification of RNNs [74], and 4) Robustness Verifica-
tion of SSNNs [79]. The results presented were all performed on a desktop with
the following configuration: AMD Ryzen 9 5900X @3.7GHz 12-Core Processor,
64 GB Memory, and 64-bit Microsoft Windows 10 Pro.

4.1 Comparison to MATLAB’s Deep Learning Verification Toolbox

In this comparison, we make use of a subset of the benchmarks and properties
evaluated in last year’s Verification of Neural Network (VNN) [55] competition,
in which we demonstrate the capabilities of NNV with respect to the latest
commercial product from MATLAB for the verification of neural networks [69].

We compared them on a subset of benchmarks from VNN-COMP’22 [55]:
ACAS Xu, Tllverify, Oval21 (CIFAR10 [43]), and RL benchmarks, which con-
sists on verifying 90 out of 145 properties of the ACAS Xu, where we compare
MATLAB’s methods, approx-star, exact (parallel, 8 cores) and 4 relax-star meth-
ods. From the other 3 benchmarks, we select a total of 90 properties to verify,
from which we limit the comparison to the approx-star and MATLAB’s method.
In this section, we demonstrate NNV is able to verify fully-connected layers,
ReLU layers, flatten layers, and convolutional layers. The results of this compar-
ison are described in Table 2. We can observe that MATLAB’s computation time
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Table 2: Verification of ACAS Xu properties 3 and 4.
matlab approx relax 25% relax 50% relax 75% relax 100% exact (8)

prop 3

(45)

SAT 3 3 3 2 0 0 3

UNSAT 10 29 8 2 1 0 42

time (s) 0.1383 0.6368 0.6192 0.5714 0.3843 0.0276 521.9

prop 4

(45)

SAT 1 3 3 2 0 0 3

UNSAT 2 32 6 1 1 0 42

time (s) 0.1387 0.6492 0.6420 0.5682 0.3568 0.0261 89.85

Table 3: Verification results of the RL, tllverify and oval21 benchmarks. We
selected 50 random specifications from the RL benchmarks, 10 from tllverify
and all 30 from oval21. - means that the benchmark is not supported.

RL (50) Tllverify (10) Oval21 (30)

SAT UNSAT time (s) SAT UNSAT time (s) SAT UNSAT time (s)

matlab 20 11 0.0504 0 0 0.1947 - - -

NNV 32 14 0.0822 0 0 13.57 0 11 136.5

is faster than NNV star methods, except for the relax star with 100% relaxation.
However, NNV’s exact and approx methods significantly outperform MATLAB’s
framework by verifying 100% and 74% of the properties respectively, compared
to 18% from MATLAB’s. The remainder of the comparison is described in Ta-
ble 3, which shows a similar trend: MATLAB’s computation is faster, while NNV
is able to verify a larger fraction of the properties.

4.2 Neural Ordinary Differential Equations

We exhibit the reachability analysis of GNODEs with three tasks: dynamical
system modeling of a Fixed Point Attractor (FPA) [52, 54], image classification
of MNIST [46], and an adaptive cruise control (ACC) system [73].
Dynamical Systems. For the FPA, we compute the reachable set for a time
horizon of 10 seconds, given a perturbation of ± 0.01 on all 5 input dimensions.
The results of this example are illustrated in Figure 2c, with a computation
time of 3.01 seconds. The FPA model consists of one nonlinear neural ODE, no
discrete-time layers are part of this model [52].
Classification. For the MNIST benchmark, we evaluate the robustness of two
GNODEs with convolutional, fully-connected, ReLU and neural ODE layers,
corresponding to CNODES and CNODEM models introduced in [52]. We verify
the robustness of 5 random images under an L∞ attack with a perturbation
value of ± 0.5 on all the pixels. We are able to prove the robustness of both
models on 100% of images, with an average computation time of 16.3 seconds
for the CNODES , and 119.9 seconds for the CNODEM .
Control systems. We verify an NNCS of an adaptive cruise control (ACC)
system, where the controller is a FFNN with 5 ReLU layers with 20 neurons
each, and one output linear layer, and the plant is a nonlinear neural ODE [52].
The verification results are illustrated in Figure 2b, showing the current distance
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Fig. 2: Verification of RNN and neural ODE results. Figure 2a shows the verifi-
cation time of the 3 RNNs evaluated. Figure 2b depicts the safety verification of
the ACC, and Figure 2c shows the reachability results of the FPA benchmark.

between the ego and lead cars and the safety distance allowed. We can observe
that there is no intersection between the two, guaranteeing its safety.

4.3 Recurrent Neural Networks

For the RNN evaluation, we evaluate of three RNNs trained on the speaker
recognition VCTK dataset [88]. Each network has an input layer of 40 neurons,
two hidden layers with 2,4, or 8 memory units, followed by 5 ReLU layers with
32 neurons, and an output layer of 20 neurons. For each of the networks, we
use the same 5 input points (40-dimensional time-independent vectors) for com-
parison. The robustness verification consists on proving that the output label
after T ∈ {5, 10, 15, 20} steps in the sequence is still the same, given an adver-
sarial attack perturbation of ϵ = ± 0.01. We compute the reachable sets of all
reachability instances using the approx-star method, which was able to prove
the robustness of 19 out of 20 on N2,0, and N4,4 networks, and 18 for the N8,0

network. We show the average reachability time per T value in Figure 2a.

4.4 Semantic Segmentation

We demonstrate the robustness verification of two SSNNs, one with dilated con-
volutional layers and the other one with transposed convolutional layers, in ad-
dition to average pooling, convolutional and ReLU layers, which correspond to
N4 and N5 introduced in Table 1 by Tran et al. [79]. We evaluate them on one
random image of M2NIST [18] by attacking each image using an UBAA bright-
ening attack [79]. One of the main differences of this evaluation with respect
to the robustness analysis of other classification is the evaluation metrics used.
For these networks, we evaluate the average robustness values (percentage of
pixels correctly classified), sensitivity (number of not robust pixels over number
of attacked pixels), and IoU (intersection over union) of the SSNNs. The com-
putation time for the dilated example, shown in Figure 3, is 54.52 seconds, with
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a robustness value of 97.2%, a sensitivity of 3.04, and a IoU of 57.8%. For the
equivalent example with the transposed network, the robustness value is 98.14%,
sensitivity of 2, IoU of 72.8%, and a computation time of 7.15 seconds.
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Fig. 3: Robustness verification of the dilated and transposed SSNN under a
UBAA brightening attack to 150 random pixels in the input image.

5 Conclusions

We presented version 2.0 of NNV, the updated version of the Neural Network
Verification (NNV) tool [80], a software tool for the verification of deep learning
models and learning-enabled CPS. To the best of our knowledge, NNV is the
most comprehensive verification tool in terms of the number of tasks and neural
networks architectures supported, including the verification of feedforward, con-
volutional, semantic segmentation, and recurrent neural networks, neural ODEs
and NNCS. With the recent additions to NNV, we have demonstrated that NNV
can be a one-stop verification tool for users with a diverse problem set, where ver-
ification of multiple neural network types is needed. In addition, NNV supports
zonotope, polyhedron based methods, and up to 6 different star-based reachabil-
ity methods to handle verification tradeoffs for the verification problem of neural
networks, ranging from the exact-star, which is sound and complete, but com-
putationally expensive, to the relax-star methods, which are significantly faster
but more conservative. We have also shown that NNV outperforms a commer-
cially available product from MATLAB, which computes the reachable sets of
feedforward neural networks using the zonotope reachability method presented
in [66]. In the future, we plan to ensure support for other deep learning models
such as ResNets [30] and UNets [60].
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