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Abstract—Over the last decade, advances in machine learning
and sensing technology have paved the way for the belief that
safe, accessible, and convenient autonomous vehicles may be
realized in the near future. Despite the prolific competencies of
machine learning models for learning the nuances of sensing,
actuation, and control, they are notoriously difficult to assure. The
challenge here is that some models, such as neural networks, are
“black box” in nature, making verification and validation difficult,
and sometimes infeasible. Moreover, these models are often
tasked with operating in uncertain and dynamic environments
where design time assurance may only be partially transferable.
Thus, it is critical to monitor these components at runtime.
One approach for providing runtime assurance of systems with
unverified components is the simplex architecture, where an
unverified component is wrapped with a safety controller and
a switching logic designed to prevent dangerous behavior. In
this paper, we propose the use of a real-time reachability
algorithm for the implementation of such an architecture for
the safety assurance of a 1/10 scale open source autonomous
vehicle platform known as F1/10. The reachability algorithm (a)
provides provable guarantees of safety, and (b) is used to detect
potentially unsafe scenarios. In our approach, the need to analyze
the underlying controller is abstracted away, instead focusing on
the effects of the controller’s decisions on the system’s future
states. We demonstrate the efficacy of our architecture through
experiments conducted both in simulation and on an embedded
hardware platform.

Index Terms—formal verification, reachability analysis, imita-
tion learning, deep reinforcement learning

I. INTRODUCTION

The vision of a “driverless” future has riveted many tech-
nology enthusiasts, researchers, and corporations for decades
[1]. The prevailing conviction is that there are relatively few
technologies that hold as much promise as autonomous vehi-
cles (AVs) in bringing about safe, accessible, and convenient
transportation. Particularly, when the status-quo is considered,
far too many individuals lose their lives to traffic fatalities
each year [1]. As Koopman et al. write, “The question is not
whether autonomous vehicles will be perfect. The question is

when [will] we be able to deploy a fleet of fully autonomous
driving systems that are actually safe enough to leave the
human completely out of the driving loop [1].”

The two fundamental challenges widely regarded as limiting
the arrival and widespread adoption of AVs are safety and re-
liability [2]. Reasoning about safety requires an understanding
of the joint dynamics of computers, networks, and physical
dynamics in uncertain and variable environments, making it a
notoriously difficult problem [3]. To handle the complexities of
their environments, many AVs make use of Machine Learning
(ML) components to decipher the information observed from
an ever-evolving configuration of on-board sensors [3]. Despite
the impressive capabilities of these components, there are
reservations about using them within safety-critical settings
due to their largely opaque nature. Utilizing a “black-box”
model within a system that is safety-critical constitutes the
highest form of technical debt [4] and, as a result, the last
several years have witnessed a significant increase in the
development of techniques that seek to reason about the safety
and robustness of machine learning methods [5].

Unfortunately, despite numerous works proposed in the past
few years for the formal analysis of machine learning methods,
the vast majority of these efforts have not been able to scale to
the complexity found in real world applications, where models
such as neural networks may be characterized by millions
or even billions of parameters [6]. Thus, designing solutions
that are both practical and rigorous is extremely challenging.
One approach that has enabled the assurance of systems with
unverified components is the simplex architecture [7]. In this
framework, an unverified component is wrapped with a safety
controller and switching logic designed to transfer control to
the safety controller in certain situations [8]. The key challenge
in this regime is to design a switching logic that allows the
dynamic capabilities of the unverified, complex controller to
be employed without compromising safety. In this paper, we
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extend the real-time reachability algorithm from [8], [9] to
design a simplex architecture for a 1/10 scale autonomous
racing car called the F1/10 platform.

To put our work into context, this work falls within the
runtime verification or runtime assurance realm. Our aim is
to construct an architecture that allows us to ensure that an
autonomous vehicle, controlled using machine learning strate-
gies, never enters unsafe states as it navigates an environment.
Specifically, the set of control strategies presented herein were
synthesized using deep reinforcement learning and imitation
learning, which have generated a considerable amount of
excitement in recent years [10]. One strength of our approach
is it abstracts away the need to analyze the underlying nature
of these controllers and instead observes the influence of their
decisions on the system behavior at runtime.

To perform the verification, we first identify a dynamical
model of the car and assume that the car operates within an
a priori known environment. Next, we synthesize controllers
using data collected from a series of experiments with the
F1/10 vehicle, as well as through the execution of a series
of deep reinforcement learning training campaigns. Using the
obtained controllers, we aim to verify that the car does not
crash into static obstacles within its environment in addition
to the environment boundaries. To do this, we extend a real-
time reachability algorithm of Bak et al. [8], [9] to compute
the set of reachable states for a finite time-horizon and check
for potential collisions. This safety checking forms the basis
of the switching scheme in our simplex architecture, and we
evaluate the merits of this approach both in simulation and
on the F1/10 hardware platform using a variety of controllers,
number of obstacles, and runtime configurations.

In summary, the contributions of this paper are: (1) We
modify the real-time reachability algorithm presented in [8]
to handle static obstacles in a sound and real-time manner.
(2) We implement a simplex control architecture that uses
real-time reachability for online collision avoidance. (3) We
show our method working with multiple machine learning
controllers. (4) We demonstrate success using our method
to safely navigate through obstacles the trained controllers
have no prior experience with. (5) We evaluate the safety
of machine learning components transferred to real-world
hardware without additional training.

II. BACKGROUND: THE SIMPLEX ARCHITECTURE
AND REAL-TIME REACHABILITY

A. Simplex Architecture

In the simplex architecture, the unverified component, or
complex controller, is wrapped with a safety controller and a
switching logic used to ensure safety [8]. A useful analogy for
this architecture is a driving instructor’s car with two steering
wheels and two sets of brakes. As long as the instructor is
capable of intervening in dangerous situations, the capricious
student is allowed to drive. Typically, the complex controller
has better performance with respect to the design metrics,
whereas the safety controller is designed with simplicity and

Fig. 1. Visualization of the set of reachable states using the current control
action. For illustration purposes, we display only a subset of the hyper-
rectangles (alternating green and blue boxes) making up the reachable set.
This example corresponds to a safe scenario, as there is no intersection with
obstacles or the racetrack walls (black). The orange squares represent the
location of cones and their corresponding bounding box.

verifiability in mind. Thus, by using this architecture, one can
utilize the complex controller while still maintaining the formal
guarantees of the safety controller. The key challenge when
designing a system with the simplex architecture is properly
designing the switching logic [9]. One must be able to clearly
delineate safe states from unsafe states.

In a typical implementation of the simplex architecture, the
switching logic is primarily designed either from a control
theoretic perspective through the solution of Linear Matrix
Inequalities (LMI) [11], or using a formal analysis hybrid-
systems reachability technique [12]. In this paper, our simplex
design requires computing the set of reachable states online
through the use of a real-time reachability algorithm for short
time horizons.

B. Real-Time Reachability

Reachability algorithms have traditionally been executed
offline because they are computationally intensive endeavors
[13], [14]. However, in [8], [9], Bak et al. and Johnson et
al. presented a reachability algorithm, based on the seminal
mixed face-lifting algorithm [15], capable of running in real-
time on embedded processors. The algorithm is implemented
as a standalone C-package that does not rely on sophisticated
(non-portable) libraries, recursion, or dynamic data structures
and is amenable to the anytime computation model in the real-
time scheduling literature. In this regime, each task produces a
partial result that is improved upon as more computation time
is added [9].

The controllers in our experiments are designed to sample
sensor data and compute control actions at fixed time intervals,
as typically done in the control community. During each
control period, we take the corresponding control action and
compute the reachable set of states into the future as defined
by the current state and a specified finite-time horizon. An
example of this computation is shown in Fig. 1. We assume a
fixed control action throughout the reachable set computation.
Based on the obtained reachable set, we determine if the
system will collide with objects in its environment and, if
necessary, switch to a safety controller optimized for obstacle
avoidance. If the system falls back to using a safety controller,
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we only allow a switch back to the complex controller if the
complex controller has demonstrated safe behavior for a fixed
number of control periods.1 This prevents arbitrary switching
and incorporates a sense of hysteresis into our control strategy.
Additionally, by not switching back until consistently safe
behavior has been demonstrated, we enforce a notion of dwell
time, which reduces instabilities caused by switching too
frequently.

III. EXPERIMENTAL OVERVIEW
To build and assure the safety of our system at runtime, we

perform the following steps. First, we construct a mathematical
model of the F1/10 car’s physical dynamics using system
identification techniques. We then deploy one of our trained
Machine Learning (ML) controllers in the control architecture.
These controllers are: (1) Imitation Learning (IL) controllers
trained to mimic driving behavior using data collected from a
series of experimental runs of driving with a baseline controller
and (2) Reinforcement Learning (RL) controllers trained using
multiple RL algorithms. The controllers use sensor information
to determine the desired steering angle for the vehicle. At
runtime, the mathematical model obtained through system
identification is used within the reachability algorithm to
reason about safety of the control actions selected by the ML
controllers. The simplex architecture provides the framework
for ensuring safe operation of the F1/10.

A. The F1/10 Autonomous Platform
The F1/10 platform of O’Kelly et al. [16] was originally

designed to emulate the hardware and software capabilities
of full scale autonomous vehicles. The platform is equipped
with a standard suite of sensors such as stereo cameras,
LiDAR (light detection and ranging), and inertial measurement
units (IMU). The platform uses an NVIDIA Jetson TX2 as
its compute platform, and its software stack is built on the
Robot Operating System (ROS) [16]. The result is a platform
that allows researchers to conduct real-world experiments that
investigate planning, networking, and intelligent control on a
relatively low-cost, open-source test-bed [16]. Additionally, in
order to promote rapid prototyping and consider research ques-
tions around closing the simulation to reality gap, Varundev
Suresh et al. designed a Gazebo-based simulation environment
that includes a realistic model of the F1/10 platform and its
sensor stack [17]. We utilize this simulation environment for
a number of experiments and for training our controllers.

B. Vehicle Dynamics Model and System Identification
The physical dynamics of the F1/10 vehicle are modeled

using a kinematic bicycle model [18], which is described by
a set of four-dimensional nonlinear ordinary differential equa-
tions (ODEs). The kinematic bicycle model is characterized
by relatively few parameters and tracks reasonably well at low
speeds.2 The model has four states: Euclidean positions x and

1In our experiments, we allowed a switch back to the safety controller
after 25 control periods. This corresponds to 1.25 seconds using a 20Hz
control period.

2The kinematic bicycle model typically tracks well under 5m/s [18]

y, linear velocity v, and heading θ. The dynamics are given
by the following ODEs:

ẋ = v cos(θ), ẏ = v sin(θ),

θ̇ =
v

lf + lr
tan(δ), v̇ = −cav + cacm(u− ch),

where v is the car’s linear velocity, θ is the car’s orientation,
x and y are the car’s position, u is the throttle input, δ is
the steering input, ca is an acceleration constant, cm is a
motor constant, ch is a hysteresis constant, and lf and lr are
the distances from the car’s center of mass to the front and
rear respectively [18]. Using MATLAB’s Grey-Box System
Identification toolbox, we obtained the following parameters
for the simulation model: ca = 1.9569, cm = 0.0342,
ch = −37.1967, lf = 0.225, lr = 0.225. The model was
validated using a series of experiments with an average Mean
Squared Error (MSE) of 0.003. For the hardware platform, we
obtained the following parameters: ca = 2.9820, cm = 0.0037,
ch = −222.1874, lf = 0.225, lr = 0.225, with a validation
MSE of 6.75× 10−4.

IV. CONTROLLER CONSTRUCTION

Modern data-driven and machine learning methods have
become increasingly scalable and efficient at dealing with
complex problems in numerous contexts. In this section, we
provide a high-level introduction to imitation learning and deep
reinforcement learning and describe the construction of the
controllers used within our simplex architecture.3

A. Imitation Learning

Imitation learning (IL) seeks to reproduce the behavior
of a human or domain expert on a given task [19]. These
methods fall under the branch of Expert Systems in AI, which
has seen a surge in interest in recent years. The increased
demand for these approaches is spurred on by two main
motivations. (1) In many settings, the number of possible
actions needed to execute a complex task is too large to
cover using explicit programming. (2) Demonstrations show
that having prior knowledge provided by an expert is more
efficient than learning from scratch [19]. While these ap-
proaches have demonstrated great efficacy in fixed contexts,
there are concerns regarding their ability to generalize to
novel contexts where the operating conditions are different
from those seen during training, providing a need for effective
runtime verification like the one explained in this work [19].
In this work, we utilize imitation learning to train two neural
network controllers to produce steering angles from different
sensor inputs.
Vision-Based Navigation (VBN)

Since the seminal work of Krizhevsky et al. [20] in the
ImageNet Large Scale Recognition Challenge, Convolutional
Neural Networks (CNNs) have revolutionized the field of
computer vision. Within the context of autonomous vehicles,

3All the artifacts used to train the controllers can be found in the following
repository https://zenodo.org/record/5879646.
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CNNs have demonstrated efficacy for driving tasks such as
lane following, path planning, and control, simultaneously, by
computing steering commands directly from images [10].

We utilized the CNN architecture, DAVE-2, initially pro-
posed by Bojarski et al. to drive a 2016 Lincoln MKZ, in
order to control the F1/10 model. The data we used to train
DAVE-2 was collected from a set of simulation experiments
where the sensor-action pairs were generated by a path tracking
controller optimized to keep the F1/10 in the center of the track
in the absence of obstacles. Such an environment is shown in
Fig. 1.
LiDAR Behavior Cloning (LBC)

The second network considered for imitation learning was
a standard multi-layer perceptron network that consists of an
input layer, 2 fully connected hidden layers of 64 neurons with
ReLU activation functions, and a fully connected output layer
with a tanh activation function. The input layer accepts nine
range values collected from the LiDAR at −90◦, −60◦, −45◦,
−30◦, 0◦, 30◦, 45◦, 60◦, and 90◦ from forward. The range
values are clipped between [0m, 10m]. The data used to train
this controller was collected in the same fashion as the VBN
regime.

B. Reinforcement Learning

Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) are branches of machine learning that focus
on software agents learning to maximize rewards in an en-
vironment through experience. Despite the growing success
of DRL approaches in many contexts, these methods are
mainly leveraged within simulation due to challenges with
ensuring safe training in real-world systems, designing reward
functions that deal with noisy and uncertain state information,
and ensuring trained controllers are able to generalize beyond
fixed scenarios [21]. While training a controller in simulation
and moving it into the real world is possible, a process known
as sim2real transfer, it often results in undesired, poor, and/or
dangerous behavior [21].

In this paper, we used two well-known state-of-the-art re-
inforcement learning algorithms, an off-policy DRL algorithm
known as Soft-Actor-Critic (SAC), [22], and an on-policy RL
algorithm, known as Augmented Random Search (ARS), [23].
In line with the imitation learning experiments, the agents were
trained on the racetrack shown in, Fig. 1 with no obstacles and
no backup controller. For both algorithms, the agent optimizes
performance on a dense reward function that assigns a positive
reward for counterclockwise progress around the track. The
reward is calculated using a reference path that runs through
the middle of the track. The reward value is the positive arc
length between the previous and current closest point along the
path. This reward function encourages the agent to complete
as many laps as possible as quickly as possible.
Soft Actor Critic (SAC)

This algorithm was first introduced in 2018 as an im-
provement to Deep Deterministic Policy Gradient (DDPG)
that tackled RL’s major challenges: high sample complexity
and brittle convergence properties, i.e. a heavy dependence

of hyperparameters being “just right” in order to effectively
learn [22]. In this work, the SAC controller was trained using
the same architecture as the LBC controller described in
Section IV-A.
Augmented Random Search (ARS)

This algorithm was first proposed in 2018 as a random
search method for training static, linear policies for continuous
control problems [23]. Their simple method was able to match
state-of-the-art sample efficiency on the benchmark MuJoCo
locomotion tasks,4 demonstrating that deep neural networks
might not be necessary for some complex control tasks. We
chose to highlight this RL algorithm because it allowed us to
experiment with a different control architecture. Both LBC and
SAC are the same NN architecture, differentiated by how the
networks are trained. In contrast, ARS focuses on the use of a
linear policy, i.e. a weight matrix. Instead of passing the input
through multiple layers with non-linear activation functions,
the input is multiplied by a single weight matrix to generate
the control output.

Similar to the SAC architecture, the output control signal
of the ARS policy, δ = π(s), is the desired steering angle
clipped between ±34◦. However, the input, s, consists of 271
LiDAR range values, clipped between [0m, 10m], collected
from between ±90◦ from forward.

V. ONLINE REACHABILITY COMPUTATION

Before outlining the algorithm, let us define two key terms
relevant to our approach.

Definition 1. (REACHTIME). The reachtime, Treach, is the
finite time horizon for computing the reachable set.

Definition 2. (RUNTIME). The runtime, Truntime, is the
duration of (wall) time the algorithm is allowed to run.

Using the dynamics model obtained for the F1/10, the crux
of the real-time reachability algorithm is computing the set of
reachable states from the current time t up until (t+ Treach).
The algorithm utilized within this work is based on mixed
face-lifting, which is part of a class of methods that deal with
flow-pipe construction or reachtube computation [9] where
snapshots of the set of reachable states are enumerated at
successive points in time. To formalize this concept, we define
the reachable set below.

Definition 3. (REACHABLE SET). Given a system with state
vector x(t) ∈ Rn, input vector u(t) ∈ Rm, and dynamics
ẋ(t) = f(x(t),u(t)), where t is time, and the initial state,
x0 = x(0), and input, u0 = u(0), are bounded by sets, x0 ∈ χ0,
u0 ∈ U . The reachable set of the system for a time interval
[0, Treach] is:

R[0,Treach] =
{
ψ(x0,u0, t)

∣∣x0 ∈ χ0,u0 ∈ U, t ∈ [0, Treach
]
},
(1)

4These benchmark tasks are described in more detail at
https://gym.openai.com/envs/#mujoco
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Fig. 2. The real-time reachability algorithm always returns an over-
approximation of the reachable set of states. The over-approximation error
decreases with successive iterations, provided that there is enough runtime
for re-computations. The above images demonstrate this aspect by simulating
a left-hand turn control action for Treach = 2 seconds. The green boxes
represent the set of reachable states, the red rectangle represents the interval
hull of the reachable states, and the purple points are points obtained from a
simulation of the vehicle’s dynamics.

where ψ(x0,u0, t) is the solution of the ODE at time t with
initial state x0 under control input u0.5

For general nonlinear systems, it is not possible to obtain
the exact set of reachable states R[0,Treach], so we customarily
compute a sound over-approximation such that the actual sys-
tem behavior is contained within the over-approximation [13]–
[15]. The algorithm utilized in this work utilizes n-dimensional
hyper-rectangles (“boxes”) as the set representation to generate
reachtubes [9]. Over long reachtimes, the over-approximation
error resulting from the use of this representation can be
problematic. However, for short reachtimes, it is ideal in terms
of its simplicity and speed [8].

The over-approximation error and the number of steps used
in generating the reachable set can be controlled by a reachtime
step size h. This parameter defines the level of discretization
of the time interval [0, Treach] and can be used to tune the
runtime of the reachability computation. Bak et al. leverage
the step size to make the reachability algorithm amenable to
the anytime computation model in the real-time scheduling
literature. Given a fixed runtime, Truntime, we compute the
reachable set R[0,Treach]. If there is remaining runtime, we
restart the reachability computation with a smaller step size. In
both this work and [8], the step-size is halved in each succes-
sive iteration, leading to more accurate determinations of the
reachable set. The relationship between the over-approximation
error and the step size is demonstrated in Fig. 2. We refer
readers to the following papers for an in depth treatment of
these procedures [8], [9], [15].

VI. SAFETY CHECKING

We define the notion of safety considered in this work below.

Definition 4. (SAFETY). Let Λ represent the set of unsafe
states. A system is considered safe over the finite time horizon,
Treach, if R[0,Treach] ∩ Λ = ∅.

5Our assumption is that f is globally Lipschitz continuous. This property
guarantees the existence and uniqueness of a solution for every initial condition
in χ0.

In our autonomous racecar scenario, Λ, consists of all static
obstacles within the environment, described by a bounding-
box, and the boundaries of the racetrack, characterized by
a list of finely separated points. These representations are
then converted into their hyper-rectangle formulations that
make up Λ. Fig. 1 provides a visualization of the obstacles,
and Fig. 4 displays our discretization of the racetrack. If
there are no intersections between R[0,Treach] and Λ, then we
conclude that the system is safe. However, since our approach
computes an over-approximation of R[0,Treach], it may lead
to conservative observations of unsafe behavior. This occurs
when the error in the over-approximation of R[0,Treach] results
in intersections with the set of unsafe states, despite these
intersections not occurring with the exact reachable set. By
refining the reachable set in successive iterations, our regime
seeks to mitigate the occurrence of falsely returning unsafe.

The two chief considerations in the anytime implementation
of the safety checking procedure are (1) the overall soundness
of our approach, and (2) the real-time nature of our scheme.
Satisfying both requirements constitutes the novel extensions
of the aforementioned algorithm. For the results of the ver-
ification to be sound, the safety checking process must be
carried out in its entirety before a safety result is issued. At
the same time, this requirement must be balanced alongside the
real-time stipulation that tasks operate within pre-defined and
deterministic time spans. Thus, our implementation ensures
soundness properties while maintaining a low-likelihood of
missing timing deadlines.

Ideally, to ensure there were no missed deadlines, we
would build our system in a Real-Time Operating System
(RTOS), which allows for the specification of task priorities,
executing them within established time frames. However, our
implementation does not make use of an RTOS, and instead
depends on native Linux and ROS to handle task management.
To combat this shortcoming and reduce the number of missed
deadlines, we estimate how the time required to compute the
next reachability loop. If our estimate exceeds the remaining
allotted time, the process terminates. There is an inherent
tradeoff between the conservativeness of our runtime estimates
and the conservativeness of the resulting reachable set. In this
work, we chose to maximize the number of iterations used
in constructing the reachable set at the risk of occasionally
missing deadlines. Our experiments demonstrate that we were
successful in minimizing the number of missed deadlines
during operation.

Let k denote the number of hyper-rectangles used in repre-
senting the reachable set. k is characterized by the following
equation: k = Treach/h.6 Since each successive iteration
decreases the step size by half, the number of hyper-rectangles
that make up R[0,Treach] doubles. Thus, the complexity of
the safety checking process is O(2k).7 Therefore, we can

6We begin the flow-pipe construction with an initial time step of h =
Treach/10.

7This analysis neglects consideration of the obstacles and the points used
to represent the racetrack boundaries. Since these do not change between
iterations, reasoning only about the hyper-rectangles is sufficient.

5



Fig. 3. Overview of the Simplex architecture deployed on the F1/10 system
described in Section VII. The switching logic consists of monitoring the
intersection between the F1/10 reachable set and the positions of static
obstacles within the environment.

estimate that a subsequent iteration of the algorithm will take
twice as long as the current one and bloat this estimate to
be conservative. To ensure that our estimates are accurate in
our implementation, rather than deriving R[0,Treach] and then
checking whether or not the system has entered an unsafe
scenario, the safety checking is done during the computation
with intermediate hyper-rectangles as outlined in [8]. This
prevents us from needing to dynamically store the reachable
set and allows us to restart the computation sooner if an unsafe
state is detected.

VII. ROS SIMPLEX ARCHITECTURE

Our simplex architecture for the F1/10 is designed using
ROS [24], and an overview of the design is shown in Fig. 3.

There are two considerations that play a major role in
designing the simplex architecture: (1) the finite time horizon,
Treach, over which we are reasoning about safety, and (2) the
amount of time, Truntime, allocated for the computation of
the reachsets. In our experiments, we use Treach = 1.0s and
Truntime = 25ms, unless otherwise specified. These values
were determined considering the empirical results of how
long it took the F1/10 to come to a stop at speeds less than
1.5m/s, and the control period, 20Hz, which the reachability
computation needs to finish within in order to not miss a
deadline.8

Within this architecture, the primary sensors we rely on are
a LiDAR and Stereo Labs’ Zed Depth Camera. The messages
from the LiDAR are published at 40Hz, and the camera
messages are published at 20Hz. Additionally, we rely on
odometry information, published at 40Hz, in order to ascertain
the state of the F1/10 vehicle. In our design, we decouple the
control of the car’s steering and throttle control. The steering
control, δ, is governed by the ML controller, and the throttle
control is designed to maintain a constant speed, u, when the
learning-based controller is in use.

8We limit velocities to 1.5m/s because a lap on our physical track
is approximately 13.08m. Races held by the F1/10 community are around
30− 50m per lap with larger distances between the track walls, allowing for
much faster operating speeds. The rules are described in more detail here:
https://f1tenth.org/misc-docs/rules.pdf

In the traditional simplex architecture, both the decision
module and the safety controller must be verified for the
system to be verified as correct [8]. While this is straightfor-
ward for relatively simple controllers, it is significantly more
challenging for many classes of controllers, especially when
real-time execution is considered [18]. However, the main
focus of this work is evaluating the use of the reachability
algorithm as a switching logic for the simplex architecture.
Thus, we opted not to develop a “formally verified” safety
controller. Instead, we selected a controller based on a gap-
following algorithm optimized to avoid collisions with obsta-
cles. A detailed description of the gap-following algorithm can
be found in the following report [25]. It was primarily selected
due to its robust collision avoidance ability and simplicity.

VIII. EXPERIMENTAL EVALUATION
Having described the details of our reachability algorithm,

controller construction, and the simplex architecture construc-
tion, we now present the results of our empirical evaluations
both in simulation and on the hardware platform. We ran
our experiments on platforms running Linux (Ubuntu 16.04
LTS). The simulation experiments were conducted on a Dell
XPS-15 (9570) with 32GB RAM, a six-core Intel Core i7-
8750 @4.1GHz processor, and an Nvidia GeForce GTX 1050Ti
4GB graphics card. The motivation for conducting simulation
experiments stemmed from a desire to ensure fair comparisons
over numerous experiments and to promote reproducibility
for those without hardware access. The hardware experiments
were done on an Nvidia Jetson TX2 with a Dual-core Nvidia
Denver 64-bit CPU (ARM), a quad-core ARM A57 Complex,
and an NVIDIA Pascal Architecture GPU with 256 CUDA
cores. The latter configuration validates our claims that our
safety architecture admits minimal resource requirements.

The evaluation included a sizeable diversity of experiments
with respect to the speed set-point utilized by the ML con-
troller, u, the wall-time utilized by the real-time reachability
algorithm, Truntime, the presence and configuration of obsta-
cles, and an examination of how each controller performed in
each context. This allowed for an enlightening analysis on the
various trade-offs that exist within our safety architecture. For
context, the speed and wall-time analysis was evaluated on 48
different combinations of 30 experimental executions.

For benchmarking purposes, we recorded the mean
execution-times (Mean ET) of our real-time reachability algo-
rithm, as well as the average number of iterations utilized in
constructing the reachable set (Mean Iters). While a typical
discussion of upper bounds on execution times involves a
discussion of the Worst-Case Execution Time (WCET), we
instead report the Mean ET. In general, the WCET is unknown
or difficult to derive without the use of static analysis proofs
[26]. Since our safety regime relies on ROS, which is highly
dynamic and distributed, it is prohibitively difficult to perform
an exhaustive exploration of the space of all execution times
and thus derive the WCET. However, we provide a rough proxy
of the WCET by reporting the Maximal Observed Execution
Times (MOET) [26] in Table II. Additionally, we report the
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Percentage of Missed Deadlines (PMD) that result from our
soundness requirements; as we execute on a regular operating
system and not on a RTOS, this is possible, and performing the
runtime measurements may result in variance due to changing
load and scheduling. We demonstrate that this value is low
across all experiments.

In the tables that follow, ML refers to the machine learning
controller, and all summary statistics are reported alongside
their corresponding standard deviations. Additionally, to ana-
lyze the conservativeness of the regime, we report the percent-
age of the time in which the machine learning controller was
utilized during an experimental run (ML Usage).

A. Simulation
In the considered simulation scenarios, the F1/10 vehicle

is tasked with navigating a racetrack environment that has 6
traffic cones placed at random locations before the start of the
experiment. The locations of the cones are known a priori, and
Fig. 1 provides a snapshot of this setup. Utilizing the control
architecture discussed in Section VII, we ran 1440 simulation
episodes with a timeout of 60 seconds each. That is roughly
enough time to complete 2 laps at a speed of 1m/s.

Each of the controllers was trained with an assumption that
the F1/10 moves at a speed u = 1.0m/s. Thus, the experiments
at this speed provide a baseline as we consider variations
in speed, obstacles, and runtime. From inspecting Table I,
one can see that moving at speeds faster than 1.0m/s was
correlated with lower levels of safety. In particular, the SAC
controller was the least tolerant to increases in speed. Since
the SAC controller was trained to complete laps as quickly
as possible, it was often aggressive around turns, resulting in
higher declarations of unsafe behavior. In contrast, the VBN
controller was the most robust to speed changes. Still its
performance varied significantly as displayed by the standard
deviation of the controller usage at speeds of 1.5m/s. It is
worth noting, however, that the VBN has 340 times more
parameters than the SAC and LBC controllers.9

Out of the 1440 experiments conducted in simulation, we
observed collisions in 93 of them. This corresponds to a 93.5%
success rate in preventing unsafe behavior. Of these collisions,
53 of them occurred at a speed set point of 1.5m/s and
when using the IL controllers. We were able to eliminate
these collisions in subsequent experiments by increasing the
reach time horizon.10 However, in practice in order to provably
eliminate all collisions, one must also verify the decision
module and the safety controller utilized within the simplex
regime.

B. Hardware
While the simulation experiments allowed us to evaluate our

regime on a diverse set of scenarios, the hardware experiments

9The DAVE model that we utilized has 1,595,511 trainable parameters.
The multilayer perceptron is characterized by 4685 trainable parameters.

10The friction model used in the simulator is quite different from our
hardware setup. This requires a longer reach-time to ensure safety. However, to
maintain consistency across hardware and simulation experiments, we present
the results with Treach = 1.0s.

TABLE I
MACHINE LEARNING CONTROLLER USE IN THE SIMPLEX

ARCHITECTURE: SIMULATION PLATFORM

Obstacles No Obstacles
ML Controller u (m/s) Mean ML Usage (%) Mean ML Usage (%)

VBN 0.5 78.26 ± 12.74 94.08 ± 2.92
1.0 53.98 ± 15.51 78.56 ± 4.34
1.5 37.97 ± 14.11 53.07 ± 9.89

LBC 0.5 83.23 ± 14.25 99.32 ± 1.07
1.0 61.40 ± 21.96 94.83 ± 6.95
1.5 32.74 ± 12.36 43.67 ± 16.92

SAC 0.5 42.59 ± 17.80 50.32 ± 10.29
1.0 13.20 ± 8.42 11.13 ± 8.36
1.5 9.47 ± 4.19 8.87 ± 3.94

ARS 0.5 66.62 ± 9.72 69.01 ± 8.98
1.0 46.18 ± 7.57 49.99 ± 3.85
1.5 26.50 ± 7.56 30.79 ± 5.02

Fig. 4. Visualization of the hardware experiments on the F1/10 Platform,
the magenta points are the point-discretization of the wall boundaries (not
all points are visualized). Videos of the experiments can be found at
https://github.com/pmusau17/F1TenthHardware.

validate our claim that our safety architecture admits minimal
resource requirements. Additionally, these experiments allowed
us to consider the seminal problem of sim2real transfer, which
is a challenging problem within ML and robotics at large [21].
Training ML controllers in simulation and deploying them
on real-world hardware platforms, sim2real, is a challenging
problem and policies that are learned in simulation usually do
not perform as expected in the real-world. Due to the risk of
unsafe or catastrophic behavior, it is critical to monitor these
components during operation.

In comparison to the simulation experiments, our experi-
ments on the F1/10 hardware platform differed in two minor
ways. (1) In order to analyze the sim2real performance of the
controllers in isolation, we did not include obstacles within
our experimental racetrack, shown in Fig. 4.11 (2) We chose to
offload the ML components to a separate computer. Compared
to the other controllers, the VBN required a prohibitively
large amount of the computation resources on the Jetson
TX2. It is possible to optimize these ML models to run
more efficiently on the Jetson platform, but we elected not to
do so, as our primary concern was to analyze the variation
of execution times of our safety regime on the embedded
platform and the real world performance of each controller.
Additionally, offloading the expensive ML computations to
another computer allowed us to evaluate our regime with a
finer level of granularity, providing a fairer comparison of the
controllers.

11Due to the space constraints of our laboratory environment, such an
evaluation would have prohibitively skewed our results.
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TABLE II
ANALYSIS OF WALL-TIME AND SPEED VARIATION: JETSON TX2

ML Controller u (m/s) Truntime MOET (ms) Mean ET (ms) Mean Iters ML Usage (%) PMD (%)

VBN 0.5 10 10.87 ± 0.36 5.07 ± 0.53 5.39 ± 0.83 11.70 ± 6.90 0.58 ± 0.29
25 24.42 ± 0.49 10.41 ± 0.63 7.56 ± 0.97 12.38 ± 2.79 0.00 ± 0.00

1.0 10 14.36 ± 5.74 5.56 ± 0.58 5.12 ± 0.39 9.31 ± 5.07 1.61 ± 1.18
25 31.60 ± 17.81 9.36 ± 0.79 8.69 ± 1.16 9.97 ± 2.92 0.03 ± 0.06

LBC 0.5 10 24.49 ± 17.76 5.35 ± 0.45 4.65 ± 0.23 20.61 ± 7.43 0.78 ± 0.62
25 31.31 ± 14.46 9.65 ± 0.51 6.49 ± 0.82 24.28 ± 7.63 0.07 ± 0.07

1.0 10 14.25 ± 1.81 5.18 ± 0.36 4.50 ± 0.17 17.83 ± 4.75 0.75 ± 0.40
25 24.43 ± 0.59 9.35 ± 0.74 7.35 ± 1.02 14.38 ± 6.18 0.01 ± 0.03

SAC 0.5 10 10.98 ± 0.33 5.10 ± 0.16 4.97 ± 0.54 16.44 ± 9.43 1.74 ± 0.80
25 26.78 ± 2.57 10.91 ± 0.78 6.06 ± 0.72 26.17 ± 8.21 0.07 ± 0.04

1.0 10 11.46 ± 0.47 4.73 ± 0.54 5.65 ± 2.17 12.58 ± 3.40 0.61 ± 0.18
25 27.16 ± 6.38 9.69 ± 1.17 8.10 ± 0.91 9.82 ± 3.07 0.06 ± 0.10

ARS 0.5 10 13.92 ± 6.32 4.94 ± 0.30 5.63 ± 0.38 15.88 ± 1.78 0.46 ± 0.35
25 30.83 ± 15.55 9.55 ± 0.53 7.00 ± 0.66 21.17 ± 6.56 0.02 ± 0.04

1.0 10 11.53 ± 1.22 5.32 ± 0.20 4.93 ± 0.55 19.95 ± 6.65 1.13 ± 1.13
25 30.58 ± 9.60 8.89 ± 0.72 7.50 ± 0.76 23.58 ± 3.16 0.05 ± 0.05

We ran a total of 80 experiments, 5 for each controller,
with the same structure as the simulation episodes. A video
of the experiments is available online.12 The results of these
experiments demonstrated that the ML models struggled to
generalize to the real world and there was a large increase in
the amount of time that the safety controller was used. This
result can be explained by the small size of our racetrack, as
well as the differences between the simulated and real world
environments. On the other hand, the experiments demonstrate
our regime was successful in maintaining safety, as there were
no collisions observed in any of the hardware experiments.

With respect to the runtime performance of our approach,
the experiments demonstrated that Mean ET of our regime fell
well within our desired Truntime. Though a few deviations
were observed as displayed by the MOET, these deviations
were minimal as displayed by percentage of missed deadlines
shown in Table II. These deviations can be attributed to our
requirement that the safety checking process complete.

Finally, our hardware experiments demonstrated an average
execution time that was significantly lower than the set wall-
time. This result can be explained by the frequency of unsafe
determinations and the nature of the reachability algorithm.
Within the real-time reachability algorithm, the reachable-set
computations terminate whenever an unsafe state is detected.
The algorithm then restarts with half the step-size in order
to refine the over-approximation error and determine if the
“unsafe” declaration is spurious. This strategy continues until
the step size falls below a pre-specified threshold specified
to guarantee numerical stability. On the hardware platform,
this threshold was met consistently, which demonstrates the
frequency of unsafe declarations. Evidence for this observation
is provided in Table II. Experiments with higher levels of safety
utilize fewer iterations in constructing the reachable set and
generally have higher execution times. The numerical stability

12https://youtu.be/F42PF9ET7eA

termination conditions are discussed in more detail in [9].

IX. DISCUSSION

Having evaluated the merits of our approach both in simula-
tion and on an embedded hardware platform, we now present
some observations based on our results. In particular, we
focus on real-time systems, challenges we faced moving from
simulation to the real-world, and the main limitations of our
approach.

A. Real-Time Evaluation and Missed Deadlines

The basic requirement for real-time systems is that tasks
operate within pre-defined and deterministic time spans. Often,
this is accomplished through the use of a real-time operating
system (RTOS), which allows for the specification of task
priorities so that they are executed within established time
frames. Our implementation did not make use of an RTOS, thus
task management was left to the native Linux implementation.
While our experimental evaluation did demonstrate deviations
from the specified wall-time, the mean percentage of missed
deadlines on the Jetson TX2 was fewer than 2% across all of
our experiments.

B. Challenges Moving from Simulation to the Real World

Moving from simulation to the real-world hardware platform
saw a significant increase in safety controller usage. This
increased usage is a direct result of sim2real challenges in
ML. Because the real world is inherently more noisy and more
complex than the simulation environments that ML models
are typically trained in, when these models are deployed in
the real world, they are tasked with making generalizations on
data that may significantly differ from their training context.
Furthermore, this challenge is exacerbated by the reality of
imperfect dynamic and sensor perception models [21]. How-
ever, the main challenge that we faced in the transition from
simulation to the real world was the size of the track in our
laboratory setup.
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The track shown in Fig. 1 is much larger than the real world
track we tested on, shown in Fig. 4. At the narrowest point,
the simulated track is 2m wide. In contrast, the widest part
of our real-world track is slightly over 2m. The bulk of the
racetrack has a width of less than one meter. Since Truntime is
constant across the simulation and real world experiments, the
real world vehicle spends the majority of its time forecasting
unsafe actions due to its proximity to the track walls. The
hardware experiments were quite illustrative in motivating
our desire to extend the current methodologies to integrate
closed-loop reachability techniques. Our current assumption
that the control decision remains fixed throughout the reachset
construction is quite conservative. Closed-loop reachability
techniques would allow us to weaken this assumption and
compute approximations of the real inputs during the reachset
construction. However, the difficulty in performing closed-loop
reachset generation lies in developing accurate sensor models.
As an example, for the VBN controller, it is not clear how to
generate camera images based on the state of the system to
provide a meaningful and useful reachable set.

C. Limitations

While the reachability algorithm presented in this work
possesses provable guarantees, our architecture does not. Ob-
taining these guarantees requires developing a formally verified
safety controller and switching logic, which was outside the
scope of the work presented herein. Therefore, it is possible to
enter a state in our framework in which all future trajectories
will result in a collision. These states are known as inevitable
collision states and have been well-studied within the motion
planning literature [27]. In future work, we hope to address this
limitation by leveraging approaches such as viability kernels,
and dynamic safety envelopes that allow for the synthesis of
provable safe control regimes [28].

Finally, as with many model based approaches, the quality
of our reachability computations is dependent on the quality
of the underlying model of the physical system. That is, guar-
antees around safety are only valid, provided that the system
model is a good representation of reality. While the system
identification results, presented in Section III, show that our
model is reasonably accurate, in practice the implementation
of such an approach would also need to incorporate a rigorous
uncertainty quantification analysis of the underlying model
within the presence of imprecise sensor and state information
[29]. However, it is worth noting the underlying reachability
algorithm supports differential inclusions, allowing for the
straightforward incorporation of uncertainty, provided that such
an analysis has been done.

X. RELATED WORK

The simplex architecture has been used widely in the re-
search literature to provide guarantees for systems with unver-
ified components. Examples include aerospace systems, fleets
of remote controlled cars, industrial embedded infrastructure,
and distributed mobile robotics applications [30]. Most similar
to this work in [30], the authors utilize a real-time reachability

approach to verify that a group of quadcopters executing
a distributed search mission is free from collisions. Their
approach is implemented in simulation and can theoretically
deal with over 64 quadcopters. However, these works primarily
deal with developing provably correct motion planners, while
the focus of this work is abstracting away the underlying
nature of a set of ML components and reasoning about the
consequences of their actions on overall system safety.

Closely related to simplex techniques are other runtime as-
surance (RTA) methods and runtime verification (RV) methods.
RTA techniques are tasked with ensuring the safe operation of
systems with untrusted components, while runtime verification
techniques monitor a system against presupposed formal prop-
erties at runtime [31], [32]. The distinction here is that while
runtime assurance techniques may often utilize verification
results, they may also employ statistical techniques such as
anomaly detection or simulation based strategies [33].

Finally, in recent years, researchers have begun to integrate
traditionally non-real-time approaches within real-time systems
by making these approaches more amenable to real-time execu-
tion. These include viability kernel approaches that determine
if a set of states remain within a predefined region [34], as
well as Hamilton-Jacobi reachability (HJR) techniques that can
deal with dynamical systems with general nonlinear dynamics
in uncertain environments [35].

XI. CONCLUSIONS AND FUTURE WORK

This paper presents a simplex architecture for the safety
assurance of a 1/10 scale open source autonomous vehicle plat-
form. The approach relies on a real-time reachability regime
that is used to provide safety guarantees and detect potential
unsafe scenarios during operation. This approach abstracts
away the need to analyze the underlying controller and instead
focuses on the effects of control decisions on the system’s
future states. Our experiments, conducted both in simulation
and on an embedded hardware platform, validate the real-
time aspects of our approach. Moreover, they demonstrate
the efficacy of the simplex architecture in ensuring safety
in different scenarios. Improving the over-conservativeness of
the reachability framework, considering closed-loop reach-
set generation, making use of real-time operating systems,
and incorporating dynamic obstacles into our regime are left
for future work. Additionally, we wish to consider online
learning applications, as our regime can be applied to such
schemes with minimal modifications. Finally, our future work
will consider the development of a verified safety controller
and switching logic in order to maximize the benefits of the
provable guarantees of our reachability framework.
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