
Poster: HyRG: A Random Generation Tool for Affine
Hybrid Automata

Luan Viet Nguyen
University of Texas at Arlington, USA

Christian Schilling
Albert-Ludwigs-Universität

Freiburg, Germany

Sergiy Bogomolov
Albert-Ludwigs-Universität

Freiburg, Germany

Taylor T. Johnson
University of Texas at

Arlington, USA

ABSTRACT
In this poster, we present methods for randomly generating
hybrid automata with affine differential equations, invari-
ants, guards, and assignments. Selecting an arbitrary affine
function from the set of all affine functions results in a low
likelihood of generating hybrid automata with diverse and
interesting behaviors, as there are an uncountable number of
elements in the set of all affine functions. Instead, we parti-
tion the set of all affine functions into potentially interesting
classes and randomly select elements from these classes. For
example, we partition the set of all affine differential equa-
tions by using restrictions on eigenvalues such as those that
yield stable, unstable, etc. equilibrium points. We parti-
tion the components describing discrete behavior (guards,
assignments, and invariants) to allow either time-dependent
or state-dependent switching, and in particular provide the
ability to generate subclasses of piecewise-affine hybrid au-
tomata. Our preliminary experimental results with a pro-
totype tool called HyRG (Hybrid Random Generator) illus-
trate the feasibility of this generation method to automat-
ically create standard hybrid automaton examples like the
bouncing ball and thermostat.
Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools
General Terms
Theory, verification
Keywords
Hybrid automata, program generation

1. INTRODUCTION
In this poster, we present methods to randomly generate

hybrid automata with affine (linear) differential equations,
invariants, guards, and assignments implemented in a pro-
totype tool called HyRG. While random generation of affine

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
ICCPS ’15 April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s).
ACM 978-1-4503-3433-4/15/04
http://dx.doi.org/10.1145/2728606.2728650.

vector fields (i.e., continuous linear systems) has been used
to evaluate reachability algorithms [1], to the best of our
knowledge, there has been no effort to randomly generate
hybrid automata with more complex discrete structure. Ex-
isting methods for generating continuous linear systems are
relatively unsophisticated.1 There are many tools and meth-
ods for random program generation in various languages (C,
Java, etc.) [4]. Random generation of models is useful for:
(a) evaluating reachability algorithms, (b) testing various
components (from parsers to analysis algorithms) in analysis
tools, (c) testing translators from hybrid systems modeling
languages to other tools like Mathworks Simulink/Stateflow
(SLSF) [3], and (d) developing libraries of examples with
diverse continuous and discrete behaviors.

2. GENERATING HYBRID AUTOMATA
For brevity, we do not define the structure of hybrid au-

tomata, but refer to the semantics and syntax definitions of
hybrid automata in [2]. In HyRG, we randomly generate
sets of locations, continuous dynamics (flows), invariants,
transition, guards, assignments, and initial conditions for a
hybrid automaton. We denote a hybrid automaton that has
been randomly generated by AR. Rather than picking only
random matrices and vectors for the affine functions used in
flows, guards, invariants, assignments, etc., we instead par-
tition these affine functions into interesting classes. Due to
space, we focus on describing how different classes of affine
functions used in flows are randomly generated using eigen-
value constraints.
Randomly Generating Continuous Flows. A randomly
generated affine hybrid automaton AR has continuous dy-
namics defined as ẋ = Ax + B, x ∈ Rn , where n is a ran-
dom number of state variables, x is an n-vector of state
variables, and ẋ is an n-vector of the derivatives of these
variables w.r.t. time. Furthermore, A is an n × n-matrix
of real coefficients and B is an n-vector of real constants.
Using the eigen-decomposition theorem, a matrix A can be
written as A = vDv−1, where D is an n × n diagonal ma-
trix whose diagonal elements correspond to n eigenvalues λi

of the matrix A, and v is an n × n-matrix where each col-
umn vi is a corresponding eigenvector of A. If Ψ(t) = eAt

is a fundamental matrix of a linear system of differential
equations ẋ = Ax, where t denotes time, so Ψ(t) = eAtv =
evDv−1tv = veDtv−1v = veDt is also a fundamental matrix
1For instance, MathWorks Matlab includes a function rss
to generate random linear systems, http://www.mathworks.
com/help/control/ref/rss.html.

http://www.mathworks.com/help/control/ref/rss.html
http://www.mathworks.com/help/control/ref/rss.html


x1 ≥ −0.5522
ẋ1 = 0.9670x2
ẋ2 = −3.1330

start

x1 ≤ −0.5522 ∧ x2 ≤ −1.0679
x1 := −0.5522 ∧ x2 := −0.6807x2

Figure 1: A randomly gener-
ated hybrid automaton from
HyRG with similar behavior
as the bouncing ball (BB) ex-
ample.

0 20 40 60 80 100
0

2

4

6

8

10

Time (s)

x1

Figure 2: Reachable states of
a randomly generated hybrid
automaton from HyRG with
similar behavior as the ther-
mostat example.

0 5 10 15 20
-5

0

5

10

15

20

Time (s)

x1

(a)
0 5 10 15 20

-15

-10

-5

0

5

10

Time (s)

x2

(b)
Figure 3: The reachable states showing x1 and x2 computed
by the LGG algorithm in SpaceEx (red) contain their SLSF
simulation traces (blue) in Example 1.
of this system. Therefore, the general solution of a system
of differential equations ẋ = Ax is x(t) = veDtC, where C
is an n-vector of real values determined by the initial con-
ditions of x(t). If x(t0) = x0 is a vector of initial conditions,
then C = Ψ(t0 )−1x0 . For linear systems, the continuous
dynamics may be described as an exponential function of
eigenvalues, and the eigen-decomposition theorem allows us
to generate a random matrix A from sets of arbitrarily given
eigenvalues and eigenvectors. Thus, we first randomly gener-
ate a matrix of eigenvectors v as an arbitrarily non-singular
n × n-matrix, and then add constraints over the randomly
generated n × n diagonal matrix of eigenvalues D. In other
words, we can randomly generate many classes of contin-
uous dynamics with different stability scenarios based on
manipulating different sets of given eigenvalues.

3. HyRG TOOL AND RESULTS
We implemented the prototype HyRG tool in Java and

Matlab and evaluated it in several scenarios.2. Suppose that
randHA(m,n) is the main function in HyRG, where m is a
number of locations and n is a numbers of variables, and
the output is a hybrid automaton AR. We simulate AR in
SLSF and compute its reachable states in SpaceEx. The
simulation trace is contained in the set of reachable states
computed by SpaceEx, then validates the generation.

Example 1. For the input m = 1 and n = 2, if we re-
peatedly execute the function randHA enough times, we can
randomly generate a hybrid automaton AR whose discrete
structure and trajectories are similar to the bouncing ball
(BB) system. A randomly generated instance is shown in Fig-
ure 1. The initial values of its state variables are randomly
generated as x1 = 10, x2 = 8. Figure 3 shows the SpaceEx
reachability analysis and SLSF simulations3 of AR, where x1
and x2 represent the position and velocity of the BB system.
We also randomly generated 100 models similar to the BB
2The tool and examples are available online: http://www.
verivital.com/hyrg/
3We use a converter from hybrid automaton models to SLSF
models to perform the SLSF simulations [3].

Table 1: HyRG trial table for randomly generating 100 BB
and thermostat/heater examples, where N denotes a number
of trials and T is a generation time in seconds.
Example Mean Median Std.Dev Min Max

BB N 111.63 65 120.26 1 661
T 17.022 9.824 18.615 0.0946 101.23

Heater N 2126.5 1481 2152.2 24 10710
T 216.35 152.13 219.15 2.4855 1091.5

system and collected data of the generation, shown in Ta-
ble 1. When generating an automaton with a single location
and two variables, on average we will generate a BB model
after running randHA about 112 times. The average time to
generate each BB model is about 17 seconds.

Example 2. Again, if we run the function randHA long
enough, this time with the input m = 2 and n = 1, we can
randomly generate a hybrid automaton AR that has discrete
structure and trajectories similar to the thermostat system.
The system AR starts at location On, and an initial value
of x1 is equal to 3. The SpaceEx reachability analysis and
SLSF simulation of AR are shown in Figure 2, where x1 rep-
resents the temperature of a thermostat system. Again, we
generated 100 random hybrid models similar to the ther-
mostat system. Table 1 shows the data collected from the
generation process. The average number of unsuccessful tri-
als before we get one hybrid model similar to the thermostat
system is approximately 2127 trials, and an average gener-
ation time for this model is 216.35 seconds. By comparison
with the trial data for generating the BB example in Table 1,
we can see that the random generation function randHA runs
more than ten times longer to produce the thermostat sys-
tem. Since increasing the number of locations of AR leads
to a larger number of choices for other components (e.g.,
continuous dynamics, invariants, transitions, etc.), more in-
stances of AR needed to be generated.
Outlook and Future Work. Overall, these results indicate
HyRG is able to generate known hybrid automaton models—
such as BB and thermostat—that are of interest to the re-
search community and not purely arbitrary. We highlight
that all structural components of the automaton were se-
lected randomly (i.e., the transitions and continuous dy-
namics), and not simply parameters. In ongoing and fu-
ture work, we will investigate more sophisticated generation
methods (such as using stochastic grammars) and analyze
larger randomly generated examples.

4. REFERENCES
[1] M. Althoff, B. H. Krogh, and O. Stursberg. Analyzing

reachability of linear dynamic systems with parametric
uncertainties. In A. Rauh and E. Auer, editors, Modeling,
Design, and Simulation of Systems with Uncertainties,
volume 3 of Mathematical Engineering, pages 69–94. Springer
Berlin Heidelberg, 2011.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, 1995.

[3] S. Bogomolov, T. T. Johnson, L. V. Nguyen, and C. Schilling.
Translating hybrid automata to Simulink/Stateflow models. In
35th IFIP Joint International Conference on Formal
Techniques for Distributed Systems. Springer, 2015 (Under
Review).

[4] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in c compilers. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pages 283–294, New
York, NY, USA, 2011. ACM.

http://www.verivital.com/hyrg/
http://www.verivital.com/hyrg/

	1 Introduction
	2 Generating Hybrid Automata
	3 HyRG Tool and Results
	4 References

