Runtime Verification for Hybrid Analysis Tools

Luan Viet Nguyen!, Christian Schilling?, Sergiy Bogomolov®, and Taylor T.
Johnson'

1 University of Texas at Arlington, USA
2 Albert-Ludwigs-Universitit Freiburg, Germany
3 IST Austria, Austria

Abstract. In this paper, we present the first steps toward a runtime
verification framework for monitoring hybrid and cyber-physical sys-
tems (CPS) development tools based on randomized differential test-
ing. The development tools include hybrid systems reachability analysis
tools, model-based development environments like Simulink/Stateflow
(SLSF), etc. First, hybrid automaton models are randomly generated.
Next, these hybrid automaton models are translated to a number of
different tools (currently, SpaceEx, dReach, Flow*, HyCreate, and the
MathWorks’ Simulink/Stateflow) using the HyST source transformation
and translation tool. Then, the hybrid automaton models are executed
in the different tools and their outputs are parsed. The final step is the
differential comparison: the outputs of the different tools are compared.
If the results do not agree (in the sense that an analysis or verification
result from one tool does not match that of another tool, ignoring time-
outs, etc.), a candidate bug is flagged and the model is saved for future
analysis by the user. The process then repeats and the monitoring contin-
ues until the user terminates the process. We present preliminary results
that have been useful in identifying a few bugs in the analysis methods
of different development tools, and in an earlier version of HyST.

1 Introduction

Runtime verification is an approach to ensure the correctness and reliability of
a system during its execution. It can check and analyze executions of a sys-
tem under scrutiny that violate or satisfy a given correctness property by us-
ing a decision procedure called a monitor. A monitor can also be considered
as a device that can read finite traces and output a truth value derived from
a truth domain [3]. Runtime verification can be used broadly for many pur-
poses such as debugging, testing, verification, validation, fault protection, and
online system repair. In this paper, we describe a preliminary work toward a
randomized differential testing framework [5] that may be used as a runtime
monitor for various components (from parsers to analysis algorithms) in hybrid
and CPS analysis tools such as SpaceEx, dReach, Flow*, HyCreate and the
Mathworks’ Simulink/Stateflow (SLSF). A test subject is the hybrid automa-
ton randomly generated in the input format for SpaceEx using a prototype tool
called HyRG [4]*, which is then translated to other formats including dReach,

4 The tool and examples are available online: http://www.verivital.com/hyrg/

http://www.verivital.com/hyrg/

Random Generation
(HYRG)
[~
SAT Model Translation
(HYST)
|
I
lAS lAF lAD I'AH lAM I'Ao
I SpaceEx “ Flow* |I dReach | I HyCreate |I SLSF |IOtherTooIs|

I I

Execute a Random Model on Different Tools

Reach, Trace

—I Compare Analysis Results by Calling reachCheck |

l UNSAT

I Report a Candidate Bug |

Fig. 1: Overview of monitoring framework for hybrid systems analysis tools with
randomized differential testing.

Flow*, HyCreate and SLSF using the HyST model transformation tool [1]. Our
contributions include (a) the first steps toward a randomized differential testing
framework to monitor CPS development and verification tools, and (b) identify-
ing some bugs in existing tools, including a semantic difference between SpaceEx
and SLSF that we did not know about and some soundness bugs in the verifica-
tion tools that have been corrected by the tool authors [1].

2 Monitoring with Randomized Differential Testing

We first describe how the hybrid systems are randomly generated in HyRG
so they have diverse continuous and discrete behaviors. We then analyze these
examples with different hybrid systems development and verification tools, and
then compare their outputs to identify possible bugs in the tools. Figure 1 shows
the overview of our framework for randomized differential testing to monitor
hybrid systems development tools. First, a hybrid automaton Agr is randomly
generated by HyRG, then Ag is translated using HyST to equivalent automata
in different tools’ formats, denoted As, Ar, Ap, Anx, Aum, and Agp. Next, the
automata can be analyzed using the different tools, such as SpaceEx, Flow*,
dReach, and HyCreate, or simulated in SLSF. Then we compare all analysis
results by using a function reachCheck shown in Figure 2.

The reachCheck function has three inputs: Reach, Trace, and 3, where 3 is
the reachability analysis and simulation time bound. Reach is a list of sets of
time-bounded reachable states computed by different tools (e.g., the output of
SpaceEx, Flow*, etc.). Each set of reachable states, R(¢), is the set of states that
may be visited by following the model’s trajectories and transitions, for any time
t € [0, f]. That is, for a given time ¢, R(t) is the set of states reachable at time ¢
(sometimes referred to as a time-slice). The input Trace is a set of all simulation
traces produced by SLSF up to a maximum simulation time (.

1 function reachCheck(Reach, Trace, 3)
foreach set of reachable states R; in Reach

3 foreach set of reachable states R; in Reach

if i#j and Vt € [0,B8] R;i(t) AR;(t) is UNSAT then return UNSAT
5 foreach execution trace Ti in Trace

if Vt €[0,8] Te(t) ARi(t) is UNSAT then return UNSAT
7 return SAT

Fig. 2: reachCheck checks whether the set of reachable states and traces computed
by different tools overlap (have non-empty intersection) at every time instant.

The reachCheck function can check whether the reachable states or simulation
traces computed by different tools at each time have non-empty intersections.
Although all of the reachable states and simulation traces are described in dif-
ferent formats such as support functions, Satisfiability Modulo Theories (SMT)
formulas, convex sets, etc., there still exists an equivalence among them. For
example, reachable sets computed by SpaceEx’s LGG algorithm are a represen-
tation of convex sets (support functions), but these could be compared to the
Taylor models of Flow*. If the reachable sets computed by different tools have a
non-empty intersection (pairwise over all the tools), then reachCheck will return
SAT, and the monitoring continues by generating a different random model.
Otherwise, there is possibly a bug in the HyST translation or the verification
tools. For the simulation traces, if some portions of a trace are not contained in
any of the reachable states, reachCheck will return UNSAT and there is again
possibly a bug in HyST, the verification tools, or SLSF. Obviously all these tools
have numerous parameters, so numerical issues, accuracies, etc. must be taken
into account by the user to determine whether a candidate bug is real.

Next, we define the structure of a hybrid automaton [2] and then summarize
the random generation framework.

Definition 1. A hybrid automaton H is a tuple, H = (Loc, Var, Flow, Inv,
Trans, Init), consisting of following components: (a) Loc: a finite set of dis-
crete locations. (b) Var: a finite set of n continuous, real-valued variables, where
Vo € Var, v(z) € R and v(z) is a valuation—a function mapping x to a
point in its type—here, R; and Q Z Loc x R™ is the state space. (¢) Inv:
a finite set of invariants for each discrete location, VY1 € Loc, Inv(l) C R".
(d) Flow: a finite set of derivatives for each continuous variable x € Var, and
Flow(l,z) C R"™ that describes the continuous dynamics in each location | € Loc.
(e) Trans: a finite set of transitions between locations; each transition is a tuple
T = (src,dst, Grd,Rst), which can be taken from source location src to destina-
tion location dst when a guard condition Grd is satisfied, and a state is updated
by an update map Rst. (f) Init: an initial condition, Init C Q.

We denote a hybrid automaton that has been randomly generated by Ar. We
randomly generate each syntactic component of the automaton Agr. Rather than
picking only random matrices and vectors for the affine functions used in flows,
guards, invariants, assignments, etc., we instead partition these affine functions
into classes. While we assume affine functions making up the automaton, the
general method may be extended to nonlinear functions. We highlight that all
structural components of the automaton are selected randomly (i.e., the tran-

Locs
t<5

start —>| 1 —0.5679z1 — 0.13592>

t>5 Zo = —0.1359z1 — 0.9269z2 t > 10
t:=0 t=1 t:=0
T =3 + 17 x =T
z2 1= x1 + 18 t>7 z2 1= 4
t:=0Axz :=2ANx3 :=8
Locy Loca
t<7 t<9
Z = —0.7949z; + 0.2722z, 71 = —0.2936x1 — 0.1111xz2
Ty = 0.2722z1 — 0.183522 o = —0.1111xz1 — 0.449622

t=1 t=1

t>9
t:=0Ax: =21 +9 ANz := 205 + 15

Fig.3: An example hybrid automaton Ag with time-dependent switching that
was randomly generated using HyRG.

sitions and continuous dynamics), and are not simply parameters. For brevity,
we do not describe in detail the random generation of all structural components
here, but refer to our other preliminary results [4].

3 Preliminary Experimental Results

We evaluate our preliminary® monitoring framework in several scenarios to
compare differences among several hybrid systems verification tools including
SpaceEx, dReach, and Flow*, as well as SLSF simulation. Consider a randomly
generated hybrid automaton Ag shown in Figure 3. The initial state of Ar is
Locs, and the randomly generated initial values of its variables are respectively
xy = 10, 7o = 17, and t = 0. Note that Ar is nondeterministic. The results of
simulations and reachability analysis on Ag are shown in Figure 4. The reachable
states restricted to z; and 75 computed by Flow* as well as the STC and LGG
algorithms in SpaceEx do not contain a simulation trace for a supposedly equiv-
alent SLSF model created using HyST when Ag takes a transition. In this case,
the reachCheck function in Figure 2 will return UNSAT. This happens because
of semantic differences in resets among Flow*, SpaceEx, and SLSF. In SLSF, the
variables x; and z are updated sequentially, so that z; will first be updated to a
new value, and then z will be updated using the new (already updated) value of
x1. However, these variables are updated concurrently in Flow* and SpaceEx [2],
so 1z will be updated by using the previous value of z;. Based on this, we fixed
this translation error in HyST.

4 Conclusion and Future Work

In this paper, we describe our preliminary results toward building a randomized
differential testing framework to monitor hybrid and CPS development tools like
SLSF and verification tools like SpaceEx, dReach, Flow*, etc. Our preliminary
results include identifying semantic mismatches between tools automatically that
have been integrated into subsequent versions of HyST. Additionally, we have
found a couple bugs in some of the verification tools that have been corrected by

5 Some of the steps are currently manual, particularly the parsing of reachable states
and comparison thereof, but the generation with HyRG and translation with HyST
is fully automatic.

20 407
15 30t
10 & 20F

5 10
0 0 \ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a) (b)

Fig.4: SLSF simulation (blue), reachable states computed by Flow™ (green),
SpaceEx’s STC algorithm (red), and SpaceEx’s LGG algorithm (gray) for Agr
showing z; and zp versus time, respectively. The SLSF simulation traces and
the reachable states computed by Flow*, SpaceEx’s LGG and STC algorithms
do not line up (i.e., have an empty intersection) at some points in time (so
reachCheck returns UNSAT) due to a semantic difference.

the tool authors. Based on our promising preliminary results, we plan to fully
automate every step of the framework in the future.

Acknowledgments

This material is based on research sponsored by Air Force Research Laboratory under
agreement number FA8750-15-1-0105. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of Air Force Research Laboratory or the U.S.
Government. This work was also partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center Automatic Verifica-
tion and Analysis of Complex Systems (SFB/TR 14 AVACS, http://www.avacs.org/),
by the European Research Council (ERC) under grant 267989 (QUAREM) and by
the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23
(Wittgenstein Award).

References

1. Bak, S., Bogomolov, S., Johnson, T.T.: HyST: A source transformation and trans-
lation tool for hybrid automaton models. In: Proc. of the 18th Intl. Conf. on Hybrid
Systems: Computation and Control (HSCC). ACM (2015)

2. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Computer Aided Verification (CAV). LNCS, Springer (2011)

3. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic
and Algebraic Programming 78(5), 293-303 (May 2009)

4. Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: Poster: Hyrg: A random
generation tool for affine hybrid automata. In: 18th International Conference on
Hybrid Systems: Computation and Control (HSCC 2015) (2015)

5. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in ¢ com-
pilers. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 283-294. PLDI 11, ACM, New York,
NY, USA (2011)

http://www.avacs.org/

	Runtime Verification for Hybrid Analysis Tools

