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ABSTRACT
We present a technique to investigate abnormal behaviors of
signals in both time and frequency domains using an exten-
sion of time-frequency logic that uses the continuous wavelet
transform. Abnormal signal behaviors such as unexpected
oscillations, called hunting behavior, can be challenging to
capture in the time domain; however, these behaviors can
be naturally captured in the time-frequency domain. We in-
troduce the concept of parametric time-frequency logic and
propose a parameter synthesis approach that can be used to
classify hunting behavior. We perform a comparative anal-
ysis between the proposed algorithm, an approach based on
support vector machines using linear classification, and a
method that infers a signal temporal logic formula as a data
classifier. We present experimental results based on data
from a hydrogen fuel cell vehicle application and electro-
cardiogram data extracted from the MIT-BIH Arrhythmia
Database.

1. INTRODUCTION
For the last decade, signal temporal logic (STL) [11] has

been successfully extended and applied in many domains
such as exploring requirements for closed-loop control sys-
tems [8], identifying oscillatory behaviors of biology sys-
tems [5], and formalizing and recognizing music melodies [7].
Recently, Kapinski et al. introduced a new signal library
template for constructing formal requirements of automo-
tive control applications using STL [10]. These require-
ments involve various control signal behaviors such as set-
tling time, overshoot, and steady state errors. Although
most of such control signal behaviors can be characterized
in the time domain, some abnormal signal behaviors such
as hunting (undesirable oscillations) or spikes (abrupt, mo-
mentary jumps in signal values) are challenging to capture
without frequency information. In most practical control
systems, hunting behaviors are considered undesirable, or
at least not ideal, and care is taken to minimize or eliminate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’17, April 18–20, 2017, Pittsburgh, PA, USA.
© 2017 ACM. ISBN 978-1-4503-4590-3/17/04. . . $15.00.

DOI: http://dx.doi.org/10.1145/3049797.3049809

the behavior. In signal processing, hunting behavior can
manifest around sharp transitions, as a result of compres-
sion artifacts; this occurs, for example, in image processing,
resulting in ghostly bands near edges, or in audio compres-
sion, resulting in forward echo problems. In circuit design, a
hunting behavior can be the unwanted oscillation of an out-
put current or voltage, which may cause a significant rise
in power consumption, temperature, electromagnetic radia-
tion, or settling time [9]. Although some hunting behaviors
can be defined loosely as an oscillation around a given av-
erage and can be well captured using STL, some modulated
hunting signals are challenging to detect using only time
domain information [10]. Because hunting signals relate to
oscillatory properties, it is appropriate to investigate them
using time-frequency analysis.

The first attempt to introduce a specification formalism
for both time and frequency properties of a signal, called
time-frequency logic (TFL), was proposed by Donzé and
his collaborators [7]. There, a signal is preprocessed using
a Short-Time Fourier Transform (STFT) [4] to generate a
spectral signal that represents the evolution of the STFT
coefficients at some particular frequency over time. The
time-frequency predicates and arithmetic expressions con-
structed from this spectral signal are added into an STL
formula to yield a TFL formula. TFL was originally applied
to music, though it can be easily extended to other appli-
cation domains. A key limitation of the approach using the
STFT is the inherent trade-off required between resolution
in the time domain and resolution in the frequency domain;
it is difficult or impossible to obtain satisfactory resolution
in both time and frequency using the STFT for the analy-
sis. Such limitations can be overcome using the continuous
wavelet transform (CWT).

In the following, we extend the notion of TFL by using
the CWT to specify and check time-frequency properties
of signals. We introduce the concept of parametric time-
frequency logic (PTFL) and use it to perform parameter
synthesis for the purpose of classifying hunting behavior.
Previous efforts have focused on data classification of time-
series signals using STL [2, 3, 8], but identifying some ab-
normal behaviors such as hunting requires both time and
frequency information [10]. Moreover, existing classification
methods require an extensive amount of data, and the in-
ferred classifier is often difficult for engineers to interpret. In
contrast, our proposed method using PTFL can efficiently
classify abnormal behaviors with an interpretable data clas-
sifier and requires less data than existing techniques. We
note that although the below presentation is focused on one
behavior type, it is straightforward to extend the work to
detect other abnormal behaviors such as noise, spikes, or

http://dx.doi.org/10.1145/3049797.3049809


other anomalous behavior, in the time-frequency domain.
We evaluate the proposed algorithm by comparing the per-
formance against two existing classification techniques: a
traditional machine learning technique using a support vec-
tor machine with a linear kernel, and a method that infers
STL formulae as data classifiers [3]. To perform the eval-
uation, we use data sets from two different domains, the
automotive and medical domains.

2. TIME-FREQUENCY LOGIC USING CWT
Although many control system behaviors can be naturally

characterized in the time domain, there are some signal be-
haviors, such as hunting and spikes, that are challenging to
capture without frequency information. This is especially
true for non-stationary signals whose frequency components
vary over time; for this class of signals, it is essential to an-
alyze the signal properties in the time-frequency domain.
STFT is a popular transformation that has been widely
used in time-frequency analysis [4]. Using STFT to perform
time-frequency analysis, a signal is partitioned into small
segments (each segment is assumed to be stationary) whose
lengths are equal to the width of a chosen window function.
The window function is used to modulate the signal to em-
phasize the time instant associated with each segment. Un-
fortunately, the STSF provides a fixed time-frequency res-
olution so that it is not effective for signals that need to
be analyzed with different time-frequency resolutions [14].
Moreover, it is difficult to choose a proper window function
with an appropriate size that not only provides both desir-
able time and frequency resolutions but also does not violate
the stationarity condition [14]. To overcome the limitation
of the STFT, we use the CWT to analyze a signal in the
time-frequency domain.

2.1 Continuous Wavelet Transform
The CWT of a signal x(t) is formally defined as follows:

Wf(ζ, τ) =

∫ +∞

−∞
x(t)ψ∗ζ,τ (t), (1)

where ψ∗ζ,τ (t) is the complex conjugation of a basic wavelet
function ψζ,τ (t) which is derived from a mother-wavelet func-
tion ψ(t). This function has zero average in the time domain,

i.e.
∫ +∞
−∞ ψ(t)dt = 0. Furthermore, a basic wavelet function

ψζ,τ (t) can be written as:

ψζ,τ (t) =
1√
ζ
ψ

(
t− τ
ζ

)
, (2)

where ζ ∈ R>0 is a scale parameter representing the width of
the basic wavelet function, τ ∈ R is a translation factor rep-
resenting the location of the basic wavelet function, and 1√

ζ

is the energy normalization across different scales. Thus, the
CWT maps an original signal to a function of ζ and τ that
provides both time and frequency information. Note that
the scale factor is inversely proportional to the frequency of
a signal [14]. The CWT in Equation 1 measures the similar-
ity between a basic wavelet function and a signal. Indeed,
if a signal x(t) has a frequency component f corresponding
to a particular scale ζ of a wavelet function ψζ,τ (t), then
the portion of x(t) at some particular time interval where f
exists will be similar to ψζ,τ (t). As a result, the CWT co-
efficients of x(t) corresponding to f will be relatively large
over this time interval. Moreover, the time-frequency energy
density of the CWT is equivalent to the square norm of the
CWT coefficients:

PW f(ζ, τ) = |Wf(ζ, τ)|2. (3)

Time-frequency resolution. In contrast to the STFT,

the CWT can either dilate or compress the window size of
the wavelet function, and translate it along the time axis.
The Heisenberg box [12] is a range of times and frequencies
that indicates the accuracy of a time-frequency transforma-
tion. Although the area of the Heisenberg box does not
change, the time and frequency resolutions can be varied
depending on the value of ζ. As a result, the CWT can
analyze all frequency components within a signal by con-
sidering appropriate scales of the mother-wavelet function.
For instance, the CWT can use the wavelet function with
a short duration and low scale for analyzing high frequency
components, and vice versa. This advantage of the CWT al-
lows us to efficiently analyze a signal that includes abnormal
behaviors such as spikes and hunting.

2.2 Time-Frequency Logic
TFL is an extension of STL that can be used to specify

both time and frequency properties of a signal [7]. In TFL,
a signal predicate is defined over the signal representing the
evolution of the STFT coefficient at a particular frequency
over time. Given a pair (f, τ) of frequency and time, the
STFT of a signal x(t) is obtained by:

Sf,τ =

∫ +∞

−∞
x(t)ψL(t− τ)e−2iπftdt , (4)

where ψL(t) is a window function. A spectral signal y(t) =
|Sf,t|2 is the projection of the spectrogram of x(t) on a par-
ticular frequency f . Such a signal can be incorporated in
TFL formulae to form some interesting time-frequency spec-
ifications. We can see that a TFL formula is actually an STL
formula in which the signal predicate is defined over y(t) in-
stead of x(t). TFL has been used to formalize and recognize
music melodies, where time-frequency requirements are sim-

ply specified as ϕ
∆
= |Sfp,t|2 > θ, where fp is the pitch fre-

quency and θ is the STFT coefficient threshold [7]; however,
the shortcomings of the STFT mentioned previously may
reduce the ability of TFL to precisely specify and evaluate
time-frequency properties of a signal. We extend TFL to
use the CWT to obtain spectral signals from a given time-
series signal. In effect, we construct a TFL formula based
on the CWT coefficients of the spectral signals instead of
the STFT coefficients. Because the CWT can appropriately
use various scaling factors, ζ, to analyze all frequency com-
ponents at different time intervals, it gives us an ability to
study signals at flexible time-frequency resolutions.

Although the following presentation focuses on the clas-
sification of hunting behaviors, we note that the proposed
approach using TFL and CWT can be used to capture other
time-frequency specifications as well. For instance, consider
the property: “For some time in the future, the dominant
frequency of the signal is ω for 5 time units, and the domi-
nant frequency subsequently rises to twice of this value within
10-time units.” Here, the dominant frequency, f(t), of a sig-
nal x(t) is defined as the frequency corresponding to the
maximum magnitude frequency component of the signal at
time t, as provided by a CWT. Such a time-frequency prop-

erty can be written as a TFL formula, ϕ
∆
= ♦(�[0,5](f =

ω)∧♦[5,15](f = 2ω)). Then, the TFL formula ϕ can be eval-

uated as a normal STL formula using Breach1 [6]. Consider
another property such as “At some time in the future the
energy densities of the signal within a particular time inter-

1Breach [6] is a tool that allows evaluation of STL and TFL
formulae on signals.



val and a particular frequency bandwidth are always greater
than some threshold value θ.” This property can be specified

as a TFL formula, φ
∆
= ♦�[t1,t2](z(f, t) > θ), where z(f, t)

is a spectral signal that captures the minimum value of the
CWT coefficients of a signal over some frequency bandwidth
[f1, f2].

Parametric Time-Frequency Logic. We introduce para-
metric time-frequency logic (PTFL), which is an extension
of TFL where the parameters in TFL template formulae are
symbolic parameters. Similar to the concept of parameter
signal temporal logic (PSTL) introduced in [1], PTFL allows
constants in intervals bounding the temporal operators and
constant values in the predicates of PTFL formulae to be
replaced with parameters.

The p parameters in a PTFL formula are classified into
two sets:

(a) Υ = {τ1, ..., τpt} is a set of pt time parameters occurring
in the time intervals of the temporal operators, and

(b) Θ = {θ1, ..., θp−pt} is a set of p− pt threshold parame-
ters occurring in the signal predicates.

For any fixed values of Υ and Θ, a PTFL formula ϕ(τ1, . . . , τpt ,
θ1, . . . , θp−pt) yields a TFL formula corresponding to the
fixed values of the parameters. For instance, consider a

PTFL formula ϕ(τ, θ)
∆
= �[0,τ ](y(t) > θ), where y(t) is a

spectral signal, τ and θ are time and threshold parameters,
respectively. The formula ϕ(5, 10) is defined as the TFL
formula �[0,5](y(t) > 10).

3. HUNTING CLASSIFICATION
In this section, we will describe three different approaches

using PTFL and TFL to efficiently classify hunting behav-
iors in signals. Informally, a hunting behavior is an unde-
sirable oscillation appearing within a signal over some time
interval.

3.1 Parameter Synthesis Approach
We now propose a method to classify hunting behavior

based on mining parameters of the following PTFL formula:

ϕh
∆
=

m∧
i=1

♦[0,τi](Wfi(t) > θi). (5)

Intuitively, this formula specifies that “the energy densities
of the given signal at particular frequencies are eventually
greater than some threshold value”. Here, Wfi(t) is a spec-
tral signal over time that captures the energy densities of the
CWT of an original time-series signal x(t) at a particular fre-
quency fi ∈ F . Note that F is a set of frequencies based on
the scales of the CWT. Each spectral signal, Wfi(t), is the
row vector of the matrix representing the energy densities
of the CWT of x(t); such a matrix is obtained using Equa-
tion 1 and Equation 3. Also, τi ∈ Υ and θi ∈ Θ denote a
time and threshold parameter corresponding to each spec-
tral signal Wfi(t). We note that the satisfaction value of
the property ϕh monotonically increases in τi and decreases
in θi. Because of monotonicity, we can exponentially reduce
the search over the parameter space so that the synthesis
procedure is efficient [8]. Figure 1 conceptually illustrates a
spectral signal Wfi(t), and an instance of a hunting behav-
ior that may occur within a signal. We say that a signal x(t)
contains hunting behavior if the property ϕh holds. Overall,
the hunting classification problem can be written as follows.

• Given the following inputs:

𝑊𝑓1

𝑊𝑓2

𝑊𝑓𝑚−1

𝑊𝑓𝑚

frequency

time

Hunting
𝜃𝑚

𝛿

energy density

Figure 1: A sketch illustrates the hunting classifica-
tion problem using time-frequency parameter syn-
thesis. The set of spectral signals Wfi is acquired
from the CWT of an original time-series signal.

2 a set of labeled traces Ψ
∆
= {Ψα,Ψβ}, where Ψα and

Ψβ denote a set of training and testing traces, respec-
tively. Moreover, we the notation Ψ.B and Ψ.G to
respectively denote the set of traces with and without
hunting behavior. Note that all traces in the training
set exhibit hunting behavior, so that Ψα = Ψα.B

2 a cut-off frequency δ.

2 sets of parameters Υ, and Θ.

• Find values for Υ and Θ, such that:

2 xj(t) |= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ .B.

2 xj(t) 6|= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ .G.

We introduce the cut-off frequency δ to reduce the effort to
exhaustively mine parameters over the entire time-frequency
domain. It is essential for the control engineers to indicate
that hunting behavior only occurs at some high-frequency
region above δ.
Classification Algorithm. Next, we propose a heuristic to
automatically obtain values for Υ and Θ that can be used to
separate the hunting and non-hunting signals. An overview
of the heuristic is described in Algorithm 1. The heuristic
can be interpreted as follows.

Line 2 initializes a matrix Σ that represents the k m-
dimensional spectral signals transformed from k original time-
series signals in the training set using the CWT. We iterate
over each trace in Ψα to construct sets of spectral signals
{Wf1(t), ...,Wfm(t)} using the CWT, and assign them to Σ.
Next, we call the function TruncateParam to reduce the effort
of exhaustively mining all parameters over the entire time-
frequency domain. Here, Σ′ represents the k n-dimensional
(n < m) matrix of Σ corresponding to the frequency range
above δ. Next, we call the function HuntingParamSyn incor-
porated inside Breach to mine values for Υ and Θ. Then,
we test the classifier with a given set of testing traces Ψβ .
The function Classifier checks the satisfaction of ϕh for each
trace in Ψβ , and returns the misclassification rate (MCR)
value and the set of misclassified traces Ψm. The values of
Υ, Θ and the set Ψm are then returned for further anal-
ysis. Furthermore, we can call EnhancedParam function to
strengthen the values Υ and Θ and reduce the MCR value
for the purpose of optimizing the classifier formula. Note
that in the case studies, we do not use this function to eval-
uate the performance of the classifier to avoid the bias in
our comparative analysis.

3.2 Decision Tree Approach
An approach based on decision trees to classify time se-

ries data using STL formulae was implemented in the tool



Algorithm 1 Hunting Classification Using Parameter Syn-
thesis

1 function HuntingClassification(Ψα,Ψβ , δ)
Σ← 0

3 for each trace xj(t) ∈ Ψα, j ≤ k
Σ(j, :, :)←Wf1(t), ...,Wfm(t)← CWT (xj(t))

5 end for

Σ′ ← TruncateParam(δ,Σ)
7 Υ,Θ← HuntingParamSyn(Σ′)

MCR,Ψm ← Classifier(Υ,Θ,Ψβ)
9 return Υ, Θ, Ψm

end function
11 function EnhancedParam(Ψm,Ψα,Ψβ , δ)

if Ψm.B 6= ∅ then

13 Ψ′α ← Ψα ∪Ψm.B
HuntingClassification(Ψ′α,Ψβ , δ)

15 end if
end function

DT4STL [3]. That method uses a parameterized procedure
to infer STL formulae from labeled data. Given a two-class
training data and a set of PSTL templates, a decision tree
for classification is recursively built such that each node of
a tree is associated with a simple formula, selected from the
given PSTL templates. The parameter synthesis is then con-
ducted to find the STL formula that yields the best split for
the data at each node. This technique can be used to auto-
matically construct classifiers based on STL formula, but to
achieve a low MCR value, the inferred STL formulae may
be long and not easily interpretable by engineers. In this
section, we apply this approach to classify hunting versus
non-hunting signals. Instead of inferring an STL formula,
we intend to infer a TFL formula as a data classifier. Thus,
we transform original time series data into a collection of
time-frequency data (spectral signals).

We assume that control engineers initially designate the
frequency threshold separating hunting versus non-hunting
behavior. A hunting behavior is specified as any oscilla-
tory behavior occurring at frequencies above some specified
cut-off frequency δ. Thus, the time-frequency profile of a
hunting signal at some frequency component f > δ con-
tains larger values for the CWT coefficients compared to
those of non-hunting signals. So we define the spectral sig-
nal WThcoef based on the CWT coefficients of the signal in
a high-frequency region such that:

WThcoef(t) = max
ζ∈[ fc

TsFmax
, fc
Tsδ

)

PW f(ζ, t), (6)

where fc is a center frequency associated with the mother-
wavelet function, Fmax is the maximum frequency that ap-
pears in the CWT, and Ts is the sampling period. We use
such a spectral signal as an input for the DT4STL to infer a
simple TFL formula. Note that in this scenario, the inferred
TFL formula captures the non-hunting behavior of a signal.

3.3 Support Vector Machine Approach
Next, we present another approach that can solve the

problem of hunting classification: linear classification us-
ing support vector machines (SVM) [15]. A linear SVM is
a set of hyperplanes or decision boundaries that can cor-
rectly separate data into two classes. The general form of
hyperplanes is 〈w · x〉 + b = 0, where w is a normal to the
hyperplane, and b

||w|| is the perpendicular distance from the

hyperplane to the origin. The sign of the linear discriminant

function f(x)
∆
= 〈w · x〉+ b determines on which side of the

decision boundary the test data point is located. The dis-
tance from the decision boundary to the closest data point
determines the margin of the linear classifier. Suppose that
we have a set of n labeled training data (xi, ci), ..., (xn, cn)
where xi ∈ Rd and ci ∈ {1,−1}, the constrained optimiza-
tion problem of linear classification using SVM is written
as:

minimize
w,b

1

2
||w||2 + C

n∑
i=1

ζi

subject to ci(〈w · xi〉+ b) ≥ 1− ζi, i = 1, . . . , n

ζi ≥ 0. (7)

Here, ζ is a slack variable. If 0 < ζ ≤ 1, the data point lies
somewhere between the margin and the correct side of hy-
perplane, and the data point is misclassified if ζ > 1. C is a
regularization parameter that defines the trade-off between
errors of the SVM on training data and margin maximiza-
tion. A large value of C results in the low possibility of
misclassified training data points, because the optimization
in Equation 7 will choose a narrow margin hyperplane that
correctly separates training data points as much as possi-
ble. In contrast, a small value of C will result in a large
margin hyperplane, but it may yield a better result in terms
of correctly separating testing data points. Due to space
limitation, we will not discuss the formal optimization prob-
lem solved to obtain the SVM, but refer interested readers
to [15]. In this work, instead of applying the linear SVM di-
rectly to original time series signals, we need to preprocess
them to yield a corresponding set of time-frequency features.
For each time-series signal x(t), we collect a real-valued vec-

tor Wmax ∆
= [Wfmax1 , ...,Wfmaxm ] such that each element

Wfmaxi ∈ Wmax is the maximum value of a spectral sig-
nal Wfi(t). Such a vector will be used as a time-frequency
feature to design the SVM.

4. CASE STUDIES
In this section, we evaluate the capabilities of three dif-

ferent methods to classify hunting behavior for two case
studies. The first case study is based on data from an air
compressor motor speed (ACMS) system in a fuel cell (FC)
vehicle application. The second case study is based on elec-
trocardiogram (ECG) data. In both examples, we apply the
Morlet CWT [12] to the time-series signals.

4.1 ACMS Data
The ACMS system uses a compressor to regulate the air

intake of a hydrogen FC vehicle. An FC stack uses a mix-
ture of air and hydrogen to generate electrical power for the
vehicle. Accurate control of the compressor which translates
to control of the quantities of hydrogen and oxygen (air) is
required to achieve good performance and proper operation
from the FC stack. Also, the water balance (moisture level)
within the stack needs to be carefully regulated, which re-
quires regulation of the air pressure at the inlet of the stack.
The task of the ACMS system is to regulate air flow and air
pressure delivered to the inlet of the FC stack.

We consider ACMS data from an FC vehicle application.
Specifics of the data, such as units and descriptions of the
measured quantities are omitted here for proprietary rea-
sons. The ACMS data are partitioned into a collection of
traces that are 100 seconds in length and are labeled as ei-
ther good (the trace does not exhibit hunting behavior) or
bad (the trace does exhibit hunting behavior). The ACMS
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Figure 2: The classified testing data of the ACMS
signals using parameter synthesis approach.

data has a sampling period of 0.02 seconds. We note that
the same training data is used for all of the evaluations,
though the parameter synthesis approach only uses the bad
traces. In this experiment, we use the training data includ-
ing 50 total traces, in which 30 traces are labeled as good
and the others are labeled as bad. We also use the same
testing data including 10 good traces and 10 bad traces for
all of the evaluations.

Parameter Synthesis. We now illustrate the performance
of the classification heuristic shown in Algorithm 1 to clas-
sify hunting behavior for the ACMS signals. Because we
do not know the frequency range where a hunting behavior
may occur, we exhaustively mine all parameters τi ∈ Υ and
θi ∈ Θ. We choose the maximum frequency of the CWT
as Fmax = 25Hz. Here, the Algorithm 1 will search for the
best θi ∈ [0, 1] and τi ∈ [0, 100] such that all spectral signals
transformed from original time-series traces in the training
data satisfy ϕh. We then use Breach with the optimized
parameters of ϕh to classify good versus bad traces in the
testing set.

Figure 2 shows the experimental results of classifying ab-
normal ACMS signals, using the function HuntingClassification.
In the figure, we only show five representative signals in
which good traces correctly classified are shown in green,
and bad traces correctly classified are shown in blue. The
one good trace that is misclassified is shown in red. The total
running time of the classification process is approximately 3
minutes.

Decision Tree Approach. Next, we utilize the DT4STL
toolbox to infer TFL formulae that can be used to classify
hunting behavior for the ACMS data.

We preprocess the training data to yield the corresponding
set of spectral signals WThcoef with δ = 15Hz and Fmax =
25Hz. We then run the DT4STL toolbox with this set of
spectral signals using 2-fold cross-validation. As a result,
we obtain the two following TFL formulae:

ϕh1
∆
= �[37.4,98.2)(WThcoef < 0.0435)

ϕh2
∆
= �[1.29,91.3)(WThcoef < 0.0394).

The procedure takes approximately 75 seconds to infer each
formula. Using Breach, we then evaluate those formulae
with the set of testing data. The formula ϕh1 gives us all
misclassified traces that are bad traces with the MCR value
being equal to 25%. On the other hand, the formula ϕh2
results in one misclassified trace, which is a bad trace.

SVM Approach. We apply the SVM method to classify
normal versus abnormal ACMS data. We first transform all
of the traces in the training data into sets of time-frequency
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Figure 3: The classified testing data of the ECG
signals using parameter synthesis approach.

features. Next, we run the linear SVM to learn the deci-
sion boundaries that separate data as either good or bad.
Finally, we predict the testing data from the learned deci-
sion boundaries with different values of the SVM classifier
margin C.

The MCR of the hunting classification for the ACMS data
using SVM is 10% with C = 10 and reduces to 5% with
C = 100. In this case, a larger value of C gives a better result
for the classification. Moreover, the classification process
takes only 0.393 seconds.

4.2 ECG Data
An electrocardiogram (ECG) test is a noninvasive proce-

dure used to monitor the electrical activities of a heart via
a collection of electrodes attached to the patient’s skin. A
doctor can read an ECG output signal to diagnose abnor-
mal structure or function of the patient’s heart. A normal
ECG signal includes three signals: (a) the P wave repre-
senting the depolarization or contraction of the atrium (b)
the QRS complex (the R wave) indicating the ventricular
depolarization and (c) the T wave describing the ventricu-
lar repolarization. The distance between two consecutive R
peaks is considered as a heartbeat. A healthy patient has a
resting normal heartbeat (frequency) from 60 to 100 beats
per minute (bpm).

In this paper, we focus on classifying the ECG signal
that may contain a ventricular tachycardia (VT), a very
fast heart rhythm arising in the ventricles that may cause a
sudden heart failure. VT is defined as a sequence of three
or more ventricular beats with the frequency varying from
110 to 250 bpm. Thus, a VT can be considered as a hunting
behavior in an ECG signal. We conduct our classification
approaches on the MIT-BIH Arrhythmia ECG Database.
These data contain a variety of ECG signals collected from
patients 23 to 89 years of age, including patients who expe-
rience ventricular arrhythmia [13]. We transform ECG sig-
nals 20 seconds in duration (provided at a sampling period
of 0.0028 secs.) to spectral signals using the Morlet CWT.
Here, the maximum frequency of the CWT is Fmax = 4.5Hz
(∼ 270 bpm). For all of the evaluations, we use the same
training data including 20 bad traces (the traces do contain
a VT) and 40 good traces (the traces do not contain a VT),
and the same testing data including 10 good traces and 10
bad traces.

Parameter Synthesis. In this scenario, we only mine the
parameters for 20 bad traces in the training dataset. Here,
we will search for the best θi ∈ [0, 5] and τi ∈ [0, 20]. Fig-
ure 3 shows the experimental results of using the function
HuntingClassification to classify abnormal ECG signals that
contain VT. Here, we only show three signals for illustra-
tion. The approach results in one (5%) misclassified (red)



PS DT4STL SVM

Interpretation of data classifier ©
a

×
Computation time × × ©
Bad behavior localization © © ×
Low misclassification rate

a a
©

Table 1: The comparison between parameter syn-
thesis (PS) using PTFL, DT4STL toolbox using TFL,
and linear SVM in classifying abnormal signals,
where ©,

a
, × respectively denote good, ok, bad.

trace, which is a bad trace. The total running time of the
classification process is approximately 1 minute.

Decision Tree Approach. Next, we utilize the DT4STL
toolbox to classify hunting behavior for the ECG data. We
first preprocess the training data to yield the corresponding
set of spectral signals WThcoef with δ = 1.5Hz. Then, we
run the DT4STL toolbox with this set of spectral signals
using 2-fold cross-validation. As a result, we obtain two
following TFL formulae:

φh1
∆
= �[1.73,17.3)(WThcoef < 3.16)

φh2
∆
= �[2.36,20)(WThcoef < 3.21).

The procedure takes approximately 105 seconds to infer each
formula. We then use Breach to evaluate these formulae with
a set of spectral data acquired from the CWT of 10 good
traces and 10 bad traces in the testing data. The MCR
values of using φh1 and φh2 to classify these data are both
equal to 5% (but misclassified traces are different).

SVM Approach. Finally, we apply the SVM approach to
classify hunting in the ECG data. Note that we use the same
training and testing data used for the other methods. The
hunting classification of the ECG data using an SVM results
in a 5% MCR for all values of C (the one misclassified trace
is a bad trace), and the classification procedure takes 0.3
seconds.

5. DISCUSSION
In this section, we discuss the trade-offs related to the

three classification approaches presented above to classify
normal versus abnormal signals. Table 1 shows an aggregate
performance evaluation between the approaches in four dif-
ferent categories, including (a) the ability to interpret the
structure and parameters used to define the classifier, (b)
the computation time, (c) the capacity to localize where
bad behavior occurs in a signal, and (d) the ability to cor-
rectly classify normal versus abnormal signals. Although the
linear SVM can classify abnormal signals much faster and
more accurately than the parameter synthesis and the deci-
sion tree approaches, the main drawback of this method is
that it cannot reveal where the bad behavior occurs within
a signal. We found that the decision tree approach can infer
specifications that accurately classify data as either good or
bad; however, it is not easy to interpret the inferred formula
unless the user has some expertise about the input data. If
a dataset is not homogeneous (i.e., both normal and abnor-
mal signals are very different from each other), the DT4STL
toolbox may infer a complicated formula that cannot be eas-
ily interpreted. The parameter synthesis using PTFL and
the decision tree approach using TFL have similar perfor-
mance except the former provides a clearer intuition about
the classifier, as the temporal logic formula that results is
usually simpler for the PTFL case. Overall, we conclude

that a traditional machine learning technique such as the
linear SVM is the best choice if the only goal is to classify
data as either good or bad, and the most important thing is
to select a proper feature on which to base the classification
algorithm. Otherwise, if the designer additionally wishes to
both understand the meaning of a data classifier and auto-
matically localize where abnormal behaviors occur within a
signal, we conclude that the parameter synthesis approach
is the best option, as a simple temporal logic formula that
defines the classifier results from the analysis.
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[7] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and
S. Smolka. On temporal logic and signal processing. In
Automated Technology for Verification and Analysis, pages
92–106. Springer, 2012.
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