
Hyperproperties of Real-Valued Signals
Luan Viet Nguyen

University of Texas at Arlington
luanvnguyen@mavs.uta.edu

James Kapinski
Toyota Motor North America R&D

jim.kapinski@toyota.com

Xiaoqing Jin
Toyota Motor North America R&D

xiaoqing.jin@toyota.com

Jyotirmoy V. Deshmukh
Toyota Motor North America R&D
jyotirmoy.deshmukh@toyota.com

Taylor T. Johnson
Vanderbilt University

taylor.johnson@vanderbilt.edu

ABSTRACT
A hyperproperty is a property that requires two or more execution
traces to check. �is is in contrast to properties expressed using
temporal logics such as LTL, MTL and STL, which can be checked
over individual traces. Hyperproperties are important as they are
used to specify critical system performance objectives, such as
those related to security, stochastic (or average) performance, and
relationships between behaviors. We present the �rst study of hy-
perproperties of cyber-physical systems (CPSs). We introduce a new
formalism for specifying a class of hyperproperties de�ned over
real-valued signals, called HyperSTL. �e proposed logic extends
signal temporal logic (STL) by adding existential and universal trace
quanti�ers into STL’s syntax to relate multiple execution traces.
Several instances of hyperproperties of CPSs including stability,
security, and safety are studied and expressed in terms of HyperSTL
formulae. Furthermore, we propose a testing technique that allows
us to check or falsify hyperproperties of CPS models. We present a
discussion on the feasibility of falsifying or verifying various classes
of hyperproperties for CPSs. We extend the quantitative semantics
of STL to HyperSTL and show its utility in formulating algorithms
for falsi�cation of HyperSTL speci�cations. We demonstrate how
we can specify and falsify HyperSTL properties for two case studies
involving automotive control systems.

ACM Reference format:
Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh,
and Taylor T. Johnson. 2017. Hyperproperties of Real-Valued Signals. In
Proceedings of MEMOCODE ’17, Vienna, Austria, September 29-October 2,
2017, 10 pages.
DOI: 10.1145/3127041.3127058

1 INTRODUCTION
Hyperproperties were �rst proposed by Clarkson and Schneider
to characterize properties of security policies that cannot be de-
�ned over individual traces, such as service level agreements and
information-�ow properties [15]. In this work, we extend the no-
tion of hyperproperties to cover a broad range of requirements for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MEMOCODE ’17, Vienna, Austria
© 2017 ACM. 978-1-4503-5093-8/17/09. . . $15.00
DOI: 10.1145/3127041.3127058

cyber-physical systems (CPSs), and we present a taxonomy of hy-
perproperties used to address security and control design concerns
for CPSs. Also, we provide practical techniques for automating the
process of testing hyperproperties for CPSs.

In contrast to trace properties expressed over individual execu-
tion traces, hyperproperties are de�ned over multiple execution
traces. For example, one execution of a system cannot be checked
against a service level agreement property such as “the average
time elapsed between a user’s request and response over all executions
should be less than 1 second”; the property can only be evaluated
over all system execution traces. Moreover, we can consider an
information-�ow policy of noninterference speci�ed as “for all pairs
of traces of a system that have the same low-level security inputs,
they will also have the same low-level security output” [22, 41]. �is
noninterference property is a hyperproperty as it is expressed over
all pairs of traces of a system.

Hyperproperties generalize more traditional formal properties by
specifying relationships between disparate execution traces, instead
of behaviors of individual execution traces. Traditional logics that
consider traces individually, such as LTL, cannot be used to specify
hyperproperties, and thus, hyperproperties are more expressive.
Logics such as CTL and CTL* allow properties over multiple paths
of a computation tree, but they do not permit comparisons between
the paths themselves. Instead, to express and e�ciently check
hyperproperties, Clarkson et al., introduced notions of HyperLTL
and HyperCTL* [14]. Both logics directly extend LTL and allow us
to reason about more than one execution trace at a time. �e main
di�erence between HyperLTL and HyperCTL* is that the former
requires trace quanti�ers appearing at the beginning of a formula,
but the la�er allows us to specify them within a formula.

Although hyperproperties are well studied in the context of
security policies for so�ware systems, hyperproperties have not
been explored for CPSs. For a CPS that includes stochastic factors
such as noise, environment disturbance, or transducer inaccuracies,
it is realistic for design engineers to expect that the system has
some acceptable performance in a probabilistic sense rather than
requiring an absolute performance limit be met for all individual
behaviors. Acceptable performances de�ned over the averages of
se�ling time, overshoot, undershoot, or error bounds cannot be
speci�ed and checked using individual execution traces; they must
be quanti�ed over all execution traces.

Recently, security-aware function modeling of CPSs has emerged
as an important research topic in computer science and system
veri�cation. A CPS, which is an integration between cyber and
physical subcomponents, can be vulnerable to both cyber-based
and physical-based a�acks [5, 19, 39, 48]. For instance, consider a

MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Nguyen et al.

modern automobile, which is a complex CPS composed of many
computer units such as an Engine Control Unit (ECU), the Trans-
mission Control Module (TCM), and an Electronic Brake Control
Module (EBCM), all interacting with the physical world via sensors
and actuators. Cyber-based a�ackers can gain access to the com-
munication channels of a modern automobile through wireless or
in-vehicle networks. As a result, a�ackers can in�ltrate an ECU
or EBCM to stall the engine or disable the brake system [30, 45].
An alternative method of a�ack involves gaining physical access
to the system, for example by manipulating the signals processed
by the sensors (known as sensor spoo�ng), to compromise secure
information or to alter system behaviors [5, 46]. Instances of ac-
tive physical-based a�acks include vehicle braking system a�acks,
where faulty data is injected into the wheel speed sensor of a vehi-
cle to disrupt the braking function [48], and insulin delivery device
a�acks, where glucose level sensor data is corrupted to compromise
the function of the insulin delivery service [31]. A passive physical-
based a�ack, also called a side-channel a�ack, is based on physically
observing the system behavior and using leaked information to
gain insights into the system implementation [26, 28, 42]. Some
well-known side channel a�acks are power analysis a�acks [27],
timing a�acks [29], electromagnetic a�acks [43] and di�erential
fault analysis a�acks [10].

Designing a safety-critical CPS that is entirely secure from both
cyber-based and physical-based a�acks is challenging or impossi-
ble. A reasonable approach is to iteratively improve a CPS control
design using a falsi�cation technique. Falsi�cation is an automated
best-e�ort approach to identify system behaviors that violate a
given formal speci�cation [40]. �e design approach would be to
�rst formally specify safety properties of a CPS that protect the
system against possible cyber-based and physical-based a�acks
using formalisms such as temporal logic and to then iteratively
improve the design using falsi�cation, which would automatically
identify vulnerabilities in the design. Despite the a�ractiveness of
falsi�cation techniques, a�acks for CPSs o�en need to be de�ned
over multiple execution traces of the system, which is something
that cannot be expressed or falsi�ed using existing temporal log-
ics such as LTL, MTL, and STL. �us we propose an extension to
these logics that would be compatible with the appropriate spec-
i�cations. In this work, we present a study of hyperproperties
including stability, security and safety, as applied to CPSs. We
introduce several instances of hyperproperties capturing relation-
ships (e.g input-output relationships) between multiple traces of
a CPS. We extend the syntax and semantics of STL [17] to specify
hyperproperties over dense-time real-valued signals, which results
in a new logic called HyperSTL. Basically, we add quanti�ers at
the beginning of an STL formula to express relationships between
multiple traces. We also introduce a testing algorithm based on
a fragment of HyperSTL and apply it to �nd falsifying traces for
hyperproperties of industrial Simulink models. Moreover, we pro-
vide a discussion on the feasibility of falsifying or verifying various
classes of hyperproperties for CPSs.
Related work. �e study of hyperproperties for CPSs evaluated
in this paper was inspired by the previous work of Clarkson and
Schneider, who introduced hyperproperties to express security

policies such as secure information �ows and service level agree-
ments [15]. In [13], Bryans et. al. presented a general formalization
of opacity policies that prevent observers from deducing the truth
value of a predicate; those opacity policies require behaviors to
be speci�ed over multiple paths of a system. In earlier work [37],
McLean showed that some “possibilistic” security properties like
restrictiveness [35], noninterference[22] and nondeducibility [49]
are closure properties that cannot be expressed by individual exe-
cution traces. In [37], those properties are speci�ed with respect
to di�erent sets of trace contractors called selective interleaving
functions.

Following the introduction of hyperproperties [15], Clarkson
et al. introduced HyperLTL and HyperCTL*, which are exten-
sions to existing temporal logics, to express and check classes of
information-�ow hyperproperties [14]. �ese logics extended LTL
and CTL* by adding the path quanti�ers that permit speci�cations
involving multiple paths in the system. Model checking algorithms
and complexity of fragments of HyperLTL and HyperCTL* were
also given in [14], which were then further exploited and applied
to check some classes of information-�ow hyperproperties in [41].

Prototype implementations of model checkers for HyperLTL
and HyperCTL*, which assume the system is modeled as a Kripke
structure, can verify some information-�ow hyperproperties of a
discrete-time system, but extending that work to check hyperprop-
erties de�ned over continuous traces is a challenging endeavor.
For complex CPS models or for models built in frameworks with
proprietary or otherwise obfuscated semantics, such as Simulink®,
formal veri�cation of hyperproperties is e�ectively impossible, as
no corresponding Kripke structure may be obtained from those
models1. Alternatively, an easier but still di�cult task is to develop
an e�cient testing framework, which could be used to check hy-
perproperties for �nite collections of traces or could be used to
falsify hyperproperties of a CPS model; this is the contribution of
the work presented herein.

In [50], Xu et al. introduced a notion of CensusSTL that utilizes
STL by adding an outer logic to quantify the number of individual
agents of a multiagent system whose behaviors satisfy an inner STL
formula. CensusSTL is similar to the HyperSTL proposed in this
paper; however, the former is only able to specify group behaviors
from di�erent components of an individual trace while the la�er
allows us to express relationships between multiple traces.

�e remainder of the paper is organized as follows. Section 2 re-
views relevant background. Section 3 introduces several examples of
hyperproperties of CPSs including stability, security and safety. Sec-
tion 4 presents the syntax and semantics of HyperSTL. Section 5
and Section 6 describe the testing algorithm for two fragments of
HyperSTL. Section 7 applies the proposed approach to �nd falsify-
ing traces for some hyperproperties of industrial Simulink models,
and Section 8 concludes the paper.

1Some have created their own translation of Simulink models to modeling languages
with well-de�ned formal semantics (for example, see [3, 52]), but these translations
necessarily only handle a subset of the Simulink/State�ow modeling language. �is
is due to the fact that some Simulink constructs correspond to behaviors that cannot
be modeled using standard frameworks for hybrid systems. One such construct is
the Variable Transport Delay block, which, roughly speaking, corresponds to a delay
di�erential equation, a construct that is not handled by standard modeling frameworks
for hybrid systems.

Hyperproperties of Real-Valued Signals MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria

2 PRELIMINARIES
In this section, we review the concepts of signal, system, trace
property, falsi�cation, and veri�cation.
Signal. We de�ne a signal w as a function w : T → D, where
T ⊆ R≥0 is the time domain. If D = B, w is a Boolean signal whose
value is either true or false, and ifD = R, then we say that the signal
is real-valued. A trace, w : T→ D1 × . . . × Dn , is a collection of n
signals, where ∀t ∈ T,w(t) ∆

= (w1(t),w2(t), ...,wn (t)). Intuitively,
we can consider w as one execution trace of a continuous-time
system with n variables that describes an evolution of the system.
In what follows, we reserve the use of bold le�ers like w, w′ for
traces (i.e., tuples of signals), while we use lowercase italicized
le�ers such as wi to represent signals.
System. We de�ne a deterministic or nonstochastic2 cyber-physical
system Σ as a function mapping a given input trace in (T→ Dm)
to an output trace in (T→ Dn). We denote by JΣK the set of traces
w such that the �rstm components of w correspond to them input
signals for JΣK, and the next n components correspond to the n
output signals.
Trace properties. A trace property φ is a �nite or in�nite set of
individual traces. A trace property is either satis�ed or violated by
any given set of traces [6, 41]. A set of tracesW satis�es the trace
property φ ifW ⊆ φ. As noted above, an individual trace can have
several components, for example, a trace could contain m input
signals and n output signals of a given system Σ. We say that the
trace property φ holds for a system Σ (denoted as Σ |= φ) if the set
of input-output traces compatible with the system description is
contained in the trace property, i.e., JΣK ⊆ φ.
Falsi�cation. Given a trace property φ and a CPS Σ, the falsi-
�cation problem is to �nd a non-empty set W ⊆ JΣK such that
W * φ.
Veri�cation. Given a trace property ϕ, the veri�cation problem of
a CPS Σ with respect to ϕ is to show that JΣK ⊆ ϕ.

3 HYPERPROPERTIES OF REAL-VALUED
SIGNALS

Hyperproperties generalize formal properties of a system by con-
sidering sets of sets of execution traces, instead of only sets of
execution traces.

De�nition 3.1 (Hyperproperty). Let S denote the set of all traces. Let
the power set of S be wri�en as P ∆

= P(S). A hyperproperty is any
subset of P(S).

We say a set of tracesW satis�es a hyperpropertyϕ ⊆ P ifW ∈ ϕ.
Given a hyperproperty ϕ and a system Σ, the falsi�cation task is to
�nd a non-empty setW ⊆ JΣK such thatW < ϕ. Similarly, given a
hyperproperty ϕ and a system Σ, the veri�cation task is to show
that JΣK ∈ ϕ.

2Note the contrast with stochastic systems. In stochastic systems, one or more parts
of the system have randomness associated with them; for instance, the value of a
particular system parameter may be drawn from a probability distribution. �e key
di�erence is that the stochastic system may not produce the same output for a given
input. Unless otherwise speci�ed, all the systems that we consider in this paper are
deterministic.

In this section, we introduce hyperproperties for determinis-
tic systems to characterize properties such as security, safety, and
stability. We focus on a class of hyperproperties capturing relation-
ships (e.g., the input-output relationship) between multiple traces of
a system, and we show several examples of hyperproperties related
to stability and security for CPSs. In rest of this section, we use
dsup (w,w′) to denote the sup-norm distance between traces w and
w′, where dsup (w,w′) = supt ∈R≥0 | |w(t) −w

′(t)| |.
• Robust behavior is a requirement that guarantees that small dif-

ferences in system inputs result in small di�erences in system
outputs. Consider the following property: “For all pairs of traces
of a system with an input di�erence less than ϵ1, the output di�er-
ence should be bounded by ϵ2”. Such a property is a hyperproperty
as it requires at least two execution traces to check. �is hyper-
property can be formally wri�en as:

ϕ1
∆
= {W ∈ P | ∀w,w′ ∈W : dsup (win ,w′in) ≤ ϵ1

=⇒ dsup (wout ,w′out) ≤ ϵ2}. (1)
�is type of property is related to certain stability notions, such as
bounded input, bounded output (BIBO) stability and the L2 gain,
as these notions also bound the variation in the output, based
on bounded variation in the input. We note, however, that the
robust behavior hyperproperty di�ers from BIBO stability and
the L2 gain, as the robust behavior hyperproperty is speci�ed
over all pairs of execution traces while the BIBO and L2 proper-
ties are de�ned based on individual traces. �e robust behavior
hyperproperty is also related to bisimulation relations [18] and
conformance-closeness [2] for a dynamical system, as all three of
these properties are based on some constraints on the distances
between multiple traces. In fact, we may specify bisimulation
or conformance-closeness functions in terms of hyperproperties.
Lastly, we note that the robust behavior hyperproperty is per-
haps most closely related to Lipschitz Robustness of systems [23],
which bounds di�erences in output behaviors based on bounded
di�erences in input behaviors, though Lipschitz Robustness was
originally developed for timed input/output systems as opposed
to general CPS models.

• Side-channel a�acks are a�acks against cryptographic devices
based on studying leaking information about the operations
they process, such as power consumption, heat generation, and
execution time. �e side channel a�ack is an instance of an
inactive physical-based a�ack that can be used against a CPS in
which some physical behaviors are observable. A�ackers can
deduce the working principle of a system without either access
to the system itself or an understanding of the internal operation
of the system. For example, a�ackers can analyze an abnormal
change in the power consumption of an integrated circuit while
an encryption process is being executed and then reconstruct
the encryption key to access secret data [27, 28]. �e following
property permits side-channel a�acks:

ϕ2
∆
= {W ∈ P | ∃w ∈W : ∀w′ ∈W : (dsup (w,w′) > 0
∧ Power(w(t)) > c1) =⇒ Power(w′(t)) < c2}, (2)

where Power(w(t)) represents the power consumption corre-
sponding to w over time, and c1, c2 are arbitrary constants such
that c1 > c2. A system that satis�es this property allows an

MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Nguyen et al.

a�acker to detect that a particular behavior has occurred (w in
Formula 2) by monitoring the power associated with the behav-
ior. �e property is a hyperproperty as it is expressed in terms
of multiple traces. To ensure the safety of a system from the
power-monitoring a�ack, the system should satisfy ¬ϕ2. We
note that other classes of side-channel a�acks such as timing
a�acks, electromagnetic a�acks, and di�erential fault analysis
a�acks can be speci�ed using properties similar to Formula 2.

• Robust control invariance is a property that can be used to syn-
thesize safe controllers, or more to the point, can be utilized to
determine whether a safe controller exists for systems with dis-
turbances [11]. Informally, the property states that, for a given
set of behaviors that is deemed safe, a control action exists, such
that the system remains within the safe set for any allowable
disturbance input. �is can be stated formally as follows:

ϕ3
∆
= {W ∈ P | ∃w ∈W : ∀w′ ∈W : (w,w′) |= ϕ}, (3)

where (w,w′) |= ϕ means that the pair (w,w′) satis�es some
property ϕ. In this formulation, wu (t) is the component of w
that represents the controller action,wd (t) is a disturbance input,
wy (t) is a system output, and (w,w′) |= ϕ enforces both that
wu = w ′u and w ′y (t) ∈ Ω, where Ω is the set of safe behaviors.
�e robust control invariance property is related to fault data
injection (FDI) a�acks, which are active physical-based a�acks
where a�ackers try to input faulty data into a system to corrupt
the behavior of the controller. For example, a�ackers can spoof
the sensors of DC microgrids by injecting false data such as
the past outputs of the sensors at previous time instants. �is
instance of FDI a�ack is also well known as a replay a�ack [8,
31, 48]. FDI a�acks have been studied widely for CPS, and many
techniques have been proposed to e�ciently detect those a�acks
in the early stages [8, 32, 34]. However, the optimal solution is
to design a system that can defend itself against FDI a�acks [38].
To guarantee that a system can defend against a sensor a�ack,
given a speci�cation ϕ, it must be possible to choose a controller
that ensures that the output of the system always satis�es ϕ, i.e.
ϕ3 must hold.

3.1 Beyond Hyperproperties?
A hyperproperty is more expressive than a trace property as it is
de�ned over a set of sets of traces and requires multiple traces
to check. If a system is modeled as trace sets, one interesting
question to ask is whether there are system properties inexpressible
as hyperproperties. For security policies, all properties of trace
sets can be considered as hyperproperties, so the answer may be
negative [6, 15]. For CPSs, there may exist some properties that are
challenging to classify.

Consider the following property specifying the Lyapunov stabil-
ity of a dynamical control system:

ϕLy
∆
= {∀ϵ ∈ [0,∞),∃δ ∈ [0, ϵ),∀w ∈W :
| |w(0)| | < δ =⇒ (t > 0 ∧ ||w(t)| | < ϵ)}. (4)

Intuitively, this property indicates that a system is Lyapunov stable
if for any ϵ-ball around the origin, there exists a δ -ball around the
origin (δ < ϵ) such that if the system starts within the δ -ball, then

𝜖

𝛿

Figure 1: Illustration of a Lyapunov stable system.

it will never leave the ϵ-ball [9]. �e illustration of a Lyapunov
stable system is shown in Figure 1.

Lyapunov stability is speci�ed over the space of parameters and
execution traces, and involves two alternations between universal
and existential quanti�ers. As we cannot check the Lyapunov
stability with individual traces, it is not a trace property; so is it
a hyperproperty? Consider the parameters δ and ϵ as constant
signals, and then rewrite Lyapunov stability as follows:

ϕ ′Ly
∆
= {W ∈ P | ∀w ∈W : ∃w′ ∈W : ∀w′′ ∈W :

| |w ′′out (0)| | < w ′δ (0) =⇒ (t > 0 ∧ ||w ′′out (t)| | < wϵ (t))}, (5)

where a trace w is composed of two constant input signals wδ , wϵ
and an output signal wout . By mapping parameters into constant
signals, we can express interesting properties of the system as
hyperproperties. �en Lyapunov stability is a hyperproperty that
requires multiple traces to check; and it can be formally speci�ed
using the HyperSTL introduced in the next section. As to the
original question of whether all system properties of interest can
be speci�ed as hyperproperties, we leave this open.

Remark 3.2 Although we focus on describing hyperproperties
de�ned over real-valued signals, we note that there are other hyper-
properties that can be speci�ed in the context of CPSs as well. For
instance, the nondeducibility property is an important information-
�ow security policy that prevents a low-level observer with su�-
cient knowledge of a target CPS from deducing high-level (con�-
dential) information. �e nondeducibility property is de�ned such
that for each low-level input trace, there are more than one possible
high-level input traces that produce the same output. Intuitively,
an a�acker should not be able to distinguish between permissible
high-level behaviors based on low-level behaviors [20, 36]. On
the other hand, the noninterference property is another important
information-�ow security policy that requires that high-level secu-
rity users should not interfere with low-level security users. Intu-
itively, the outputs observed by the low-level security users remain
unchanged despite the actions of the high-level security users [22].
Other variants of the noninterference property such as noninfer-
ence [37], observational determinism [51], declassi�cation [44], and
quantitative nonterinference [47] are also hyperproperties that need
to be speci�ed over multiple traces. �ough the nondeducibility
and noninterference properties are relevant for CPS, in many cases
their impact on and from real-valued signals is tenuous, and so we
do not treat them further herein.

Hyperproperties of Real-Valued Signals MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria

4 HYPERSTL
In this section, we introduce HyperSTL, a temporal logic that can
be used to specify a class of hyperproperties of real-valued signals.
�e syntax and semantics of HyperSTL are naturally extended from
those of STL by adding existential and universal trace quanti�ers
into STL’s syntax to relate multiple execution traces [17].

Syntax. Let v be a trace variable from an in�nite set of trace
variablesV . �e syntax of HyperSTL is then de�ned as follows:

ϕ := ∃v.ϕ | ∀v.ϕ | φ
φ := true | µv | ¬φ | φ ∧ φ | φUIφ

Here, we add a universal quanti�er ∀ and an existential quanti�er
∃ to the syntax to indicate whether we want to specify that a
formula holds over all traces or over at least one trace, respectively.
For instance, ∀v.∃v′.ϕ means that for any trace w assigned to
trace variable v , there exists a trace w′ that can be assigned to
trace variable v′ such that ϕ holds on these two traces. We de�ne
Π : V → S as a trace assignment (i.e., a valuation), which is a
partial function mapping trace variables to traces, and S is a set of
all in�nite traces. Letvi be the projection of a trace variable v along
its ith component, the projection of a trace assignment Π(vi) maps
vi to the ith component of a trace w (i.e., wi). Also, we abuse the
subscript notation of a trace’s component to write its corresponding
trace variable’s component in a HyperSTL formula, e.g., wout is
represented by vout . A trace w can be Booleanized through atomic
predicates of the form µw

∆
= f (w1(t),w2(t), ...,wn (t)) > 0, where

f is a real-valued function. �en, µv = f (Π(v)(t)) > 0 represents
a Booleanized atomic predicate µw if v is instanced by w. Also, I
is an interval over R≥0 such as [a,b), (a,b), (a,b], [a,b], (a,+∞),
or [a,+∞), where a, b are real numbers and 0 ≤ a < b. If I is
not speci�ed, we assume that I = [0,∞). We also allow Boolean
operators ∨ and =⇒ with their standard meaning. Temporal
operators used in HyperSTL formulas include always (�), eventually
(^), and until (U), respectively, where ^Iφ = trueUIφ, and �Iφ =
¬^I¬φ. Note that we use trace variables such as v, v′ to express
HyperSTL formula and the corresponding traces represented by
these trace variables like w w′ to interpret the formula. Consider
the HyperSTL formula ϕ := ∃v.∀v′.�[0,1](| |v − v′ | | < 1). �is
property says that there is always a trace w, such that for all times
in the interval [0, 1], every other trace w′ is at a bounded distance
of 1 from w.

Boolean Semantics. A HyperSTL formula satis�ed by a set of
tracesW at a time t is wri�en as Π, t |=W ϕ, �e validity judgment
of a HyperSTL formula at a given time t is speci�ed according to
the following recursive semantics:

Π, t |=W ∃v.ϕ i� exists w ∈W : w |= ϕ and Π(v) = w

Π, t |=W ∀v.ϕ i� forall w ∈W : w |= ϕ and Π(v) = w

Π, t |=W µv i� f (Π(v)(t)) > 0
Π, t |=W ¬φ i� Π, t 6 |=W φ

Π, t |=W φ1 ∧ φ2 i� Π, t |=W φ1 and Π, t |=W φ2

Π, t |=W φ1UIφ2 i� ∃t1 ∈ t + I s.t Π, t1 |=W φ2

and ∀t2 ∈ [t , t1] s.t Π, t2 |=W φ1

Using HyperSTL, we can express the hyperproperties described
in Section 3 over some time interval [t1, t2] as follows3.
• �e robust behavior in Formula 1 can be speci�ed as:

ϕ ′1
∆
= ∀v.∀v′. �[t1,t2](dsup (vin , v

′
in) ≤ ϵ1

=⇒ dsup (vout , v′out) ≤ ϵ2). (6)

• �e power-monitoring a�ack in Formula 2 can be wri�en as:

ϕ ′2
∆
= ∃v.∀v′. �[t1,t2]((dsup (v, v

′) > 0
∧ Power (v) > c1) =⇒ Power (v′) < c2). (7)

Furthermore, we can rewrite the Lyapunov stability speci�ed in
Formula 5 as the following HyperSTL formula

ϕ ′′Ly
∆
= ∀v.∃v′.∀v′′. (v ′′out < v ′δ =⇒ �(0,∞)v

′′
out < vϵ). (8)

According to the possible alternation of quanti�ers in a Hyper-
STL’s syntax, we classify the above HyperSTL formulae into two
fragments:

(a) alternation-free HyperSTL formulae including one type of
quanti�er, and

(b) k-alternation HyperSTL formulae that have k number of
alternations between existential and universal quanti�ers.

�us, the robust behavior property can be expressed using alternation-
free HyperSTL while the power-monitoring a�ack property can
be speci�ed using 1-alternation HyperSTL. �e Lyapunov stabil-
ity property is more complex as it must be expressed using 2-
alternation HyperSTL.
Falsi�cation or Veri�cation of Hyperproperties? We have in-
troduced several classes of hyperproperties for CPSs and a temporal
logic approach to express them. Next, we investigate whether we
can falsify or verify those hyperproperties using existing methods.
Hyperproperties are more complex and expressive than traditional
properties, and performing falsi�cation and veri�cation for hyper-
properties is harder, in many cases. Despite this, we observe that
certain classes of hyperproperties can be falsi�ed or veri�ed. For
instance, we can falsify an alternation-free HyperSTL formula that
contains a universal quanti�er (e.g., the robust behavior hyperprop-
erty), and we can verify an alternation-free HyperSTL formula that
contains an existential quanti�er. For the class of hyperproperties
that includes alternating quanti�ers, falsi�cation or veri�cation
are o�en undecidable unless we impose some assumption about
the sets of execution traces (e.g., quanti�ed over some �nite set of
traces with bounded time).

4.1 t-HyperSTL
We introduce t-HyperSTL as a fragment of HyperSTL in which a
nesting structure of temporal logic formulas involving di�erent
traces is not allowed. For example, a formula ∀v.∃v′.�[0,2]v >
1 =⇒ ^[1,2]v′ > 2 is allowed but a formula ∀v.∃v′.�[0,2](v >
1 =⇒ ^[1,2]v′ > 2) is not allowed. Also, t-HyperSTL restricts
the until operator to be speci�ed over an individual trace, e.g., t-
HyperSTL does not allow the formula ∀v.∃v′.(v > 1)U[0,1](v′ > 2).

Inherited from the syntax of HyperSTL, t-HyperSTL formulae
are also classi�ed into alternation-free and k-alternation types.
3 For a robust control invariance hyperproperty, an instance of the corresponding
HyperSTL formula will be shown in Section 7.2.

MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Nguyen et al.

t-HyperSTL su�ces to express the class of hyperproperties formu-
lated in Section 3, and its corresponding semantics, which is more
restrictive than that of HyperSTL, allow us to perform falsi�cation
for these hyperproperties.

�antitative Semantics. �e quantitative semantics of t-HyperSTL
re�ects the robustness satisfaction of a t-HyperSTL formula. It is a
natural extension of those for STL [17, 33]. Given χ is a real-valued
function of a formula φ, a trace assignment Π, a trace variable v,
and a time t , the quantitative semantics of t-HyperSTL is de�ned
inductively as follows:

χ (φ,Π,∃v, t) = max
w∈W

χ (φ,Π(v) = w, t)

χ (φ,Π,∀v, t) = min
w∈W

χ (φ,Π(v) = w, t)

χ (µv > 0,Π, v, t) = µv
χ (¬φ,Π, v, t) = −χ (φ,Π, v, t)

χ (φ1 ∧ φ2,Π, v, t) = min (χ (φ1,Π, v, t), χ (φ2,Π, v, t))
χ (φ1UIφ2,Π, v, t) = sup

t1∈t+I
min (χ (φ2,Π, v, t1),

inf
t2∈[t,t1]

χ (φ1,Π, v, t2))

5 FALSIFYING ALTERNATION-FREE
T-HYPERSTL

We �rst consider the falsi�cation of alternation-free t-HyperSTL
formulae. �is fragment of HyperSTL is expressive enough to
capture a broad range of hyperproperties specifying input-output
relationships over all pairs of execution traces. We use a translation
scheme called self-composition [7], which allows us to falsify an
alternation-free t-HyperSTL formula that includes only universal
quanti�ers using a robust testing method for a normal STL formula.
�en, given an alternation-free t-HyperSTL that includes universal
quanti�ers, we a�empt to �nd a set of falsifying traces for CPSs
corresponding to this formula.
Falsi�cation algorithm. �e procedure that addresses the falsi�-
cation problem of a system Σ with respect to a given hyperproperty
φh over a time duration T is shown in Algorithm 1, and further
interpreted as follows.
� We �rst transform the alternation-free t-HyperSTL formula φh

into the equivalent STL formula φST L .
� We then call a function NewSystemGen to generate a new

model that contains copies of the original system. �e number
of copies is equal to the number of quanti�ers of the formula
φh .

� �en, we apply existing falsi�cation mechanisms for an STL for-
mula such as Breach4 [16] to compute the minimum robustness
value χmin of the system Σ′ according to φST L . Breach allows
us to parametrically generate di�erent input signals over a pa-
rameter space. For example, parameters can represent control
points, and an input signal can be created using interpolation
between these points. If χmin is negative we return the optimal
set of parameters Θf ∈ Θ that produces a falsifying behavior.

4Breach [16] is a tool that applies a best-e�ort approach to automatically check whether
a system satis�es a given STL formula.

Algorithm 1 Falsi�cation of alternation-free t-HyperSTL

1 Require: a system Σ, a parameter space Θ,

a t-HyperSTL formula φh , a time duration T ,

3 a maximum number of simulations N

begin
5 φST L ← HyperSTL2STL(φh) / / t r a n s f o rm s p e c i f i c a t i o n

Σ′ ← NewSystemGen(Σ, φh) / / t r a n s f o rm model
7 χmin, Θf ← FalsifySTL(Σ′, φST L, Θ, T , N)

if χmin < 0 then
9 return Θf

end
11 end

We note that, unlike formal veri�cation, performing falsi�cation
cannot ensure a system is always safe; even if falsi�cation fails to
identify a falsifying behavior, a counter-example may still exist.

Example 5.1. Consider a mechanical mass-spring damper system
whose dynamics are de�ned by the second-order ordinary di�eren-
tial equation:

Üx(t) + 2 Ûx(t) + 5x(t) = 3F (t), (9)

where x is the vertical position of the mass, and F is the random
external force. �e robust behavior hyperproperty of the system
is speci�ed as follows: for all pairs of traces of the system with
the external force di�erence less than ϵ1 , the output di�erence
should be bounded by ϵ2; here ϵ1 = 0.2 and ϵ2 = 0.3. We apply the
Algorithm 1 to falsify the robust behavior hyperproperty for the
system with a duration T = 10 seconds. Formula 6 can be reduced
to the normal STL formula as follows:

ϕM
∆
= �[0,10](ρin ≤ ϵ1 =⇒ ρout ≤ ϵ2), (10)

where a trace p ∆
= (ρin , ρout) of the system Σ′ captures the input-

output di�erence between two traces w,w′ of the original system
Σ′, e.g., ρin (t) = | |win (t) − w ′in (t)| |. Here, the system Σ′ con-
tains two copies of the mechanical mass-spring damper system Σ.
�e falsi�cation result shown in Figure 2 illustrates the inductive
checking procedure for the satisfaction of Formula 10 using Breach,
where alw[0,10] is equivalent to �[0,10], and the le� y-axis denotes
robustness degree. Here, we observe that the violation of the robust
behavior hyperproperty of the mechanical mass-spring damper
system occurs during the overshoot period of the outputs of the
system.

Remark 5.2 �ere is a duality between addressing the falsi�ca-
tion problem of an alternation-free t-HyperSTL that only contains
universal quanti�ers and solving the veri�cation problem of an
alternation-free t-HyperSTL that only contains existential quan-
ti�ers. Given an alternation-free t-HyperSTL such as ∃v.∃v′.ϕe ,
our purpose is to extensively simulate a system and �nd a single
pair of execution traces of the system that satis�es ϕe . Here, we
do not a�empt to falsify the system, but verify the system. �us,
this process is dual to �nding the falsifying traces of the system
corresponding to the formula ∀v.∀v′.¬ϕe .
Also, we note that we can leverage Algorithm 1 such that it includes
a parameter synthesis approach to mine hyperproperties for CPSs,
as in [24, 25]. For instance, we could use a requirement mining

Hyperproperties of Real-Valued Signals MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria

0 2 4 6 8 10
-0.05

0
0.05

false

true
Quant. sat
Bool. sat

0 2 4 6 8 10
-0.15

0
0.15

false

true

0 2 4 6 8 10
-0.15

0
0.15

false

true

0 2 4 6 8 10

Time (seconds)

-0.02
0

0.02

false

true

Figure 2: Falsi�cation result of the mass-spring damper sys-
tem. �e counterexample pair of traces found by Breach for
the robust behavior hyperproperty.

approach to automatically infer appropriate values for the ϵ1 and
ϵ2 variables in Formula 10.

6 FALSIFYING K-ALTERNATION T-HYPERSTL
Falsifying k-alternation t-HyperSTL formulas is a challenging task,
as it requires us to examine all execution traces of a system. Con-
sider a 1-alternation t-HyperSTL formula such as ∃v.∀v′.ϕ; falsify-
ing a system for this property is as hard as verifying the system,
since we need to show that for all traces w ∈ S , there exists a trace
w′ that the formula ϕ is violated, where S is an in�nite set of traces.
It is even more di�cult to perform falsi�cation for CPSs whose
dynamics evolve continuously over time. Furthermore, if a hyper-
property contains more than one alternation of quanti�ers (e.g. the
Lyapunov stability property), the falsifying algorithm may su�er
an exponential growth in complexity. Despite this, if we assume
a CPS can be modeled by a �nite set of traces, we can develop a
falsifying algorithm for the system that can prove or disprove ϕ.

In general, there may not exist a unique answer to the question
of whether we can verify or falsify a system with respect to the
formula ∃v.∀v′.ϕ using �nite simulations. We can consider several
possible answers for that question as follows.
� Case 1: if both w,w′ belong to some in�nite set of traces, then

we can neither verify nor falsify ϕ.
� Case 2: if w belongs to an in�nite set of traces and w′ belongs

to a �nite set of traces, then we cannot falsify but we can verify
ϕ.

� Case 3: if w belongs to a �nite set of traces and w′ belongs
to an in�nite set of traces, then we cannot verify but we can
falsify ϕ.

� Case 4: If both w and w′ belong to a �nite set of n traces, we
are able to verify the system with n simulations as well as falsify
the system with n(n−1)

2 simulations.
We note that in all of the cases that we are able to falsify the system
corresponding to the formula ∃v.∀v′.ϕ with �nite simulations, we
can apply Algorithm 1 to transform the falsi�cation problem to
another equivalent problem that uses a traditional STL speci�cation.

Table 1: Feasibility of solving the falsi�cation and veri�ca-
tion problems for properties and hyperproperties expressed
using STL and k-alternation t-HyperSTL under two assump-
tions: A1) using �nite simulation and A2) applying a veri�-
cation oracle that can do reachability analysis with respect
to the last quanti�er.

Type
A1: Finite Simulation A2 : Veri�cation Oracle

on the Last �anti�erFalsi�cation Veri�cation

∀ Yes No -

∃ No Yes -

∀∃ No No ∀
∃∀ No No ∃
∀∃∀ No No ∀∃
∃∀∃ No No ∃∀

�e falsi�cation procedure is similar to solving the falsi�cation
problem of alternation-free t-HyperSTL.

For the case that both execution traces of a system, w and w′,
belong to some in�nite sets, and if we have a veri�cation oracle to
address the last quanti�er (e.g., by conservatively estimating the
set of possible system behaviors, under certain conditions), we can
either falsify or verify the system. Given a set of initial states, a
veri�cation oracle can be a method that mathematically overap-
proximates the reachable set of the system or a simulation-based
technique [1, 21] that may verify the system with �nite simulations.

Alternatively, for a hyperproperty that requires two or more
alternations of quanti�ers to express, even if we have a veri�cation
oracle corresponding to the last quanti�er, we can neither falsify
nor verify a system. Using a veri�cation oracle, the feasibility of
addressing the falsi�cation and veri�cation problems associated
with a k-alternation t-HyperSTL formula is equivalent to that of a
(k − 1)-alternation t-HyperSTL formula; this is shown in Table 1.
We emphasize that any hyperproperties for general CPSs that are
as complex as, or more complicated than Lyapunov stability, are
not veri�able or falsi�able without reasonable restrictions on sets
of execution traces.

7 CASE STUDY
In this section, we introduce two proof-of-concept case studies in
the domain of automotive control systems: a) an industrial-scale
Simulink model of a closed-loop airpath control (APC) system and
b) a Simulink model of a fault-tolerant fuel (FTF) control system. We
will demonstrate how to apply the testing framework of HyperSTL
built on top of Breach to falsify the robust behavior hyperproperty
of the APC system, and the robust control invariance hyperproperty
of the FTF system under FDI a�acks.

7.1 Airpath Control Model
We use a prototype APC system to evaluate the capability of our
proposed method on an industrial control system. �e APC is a key
subsystem for a hydrogen Fuel-Cell (FC) vehicle powertrain. �e

MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Nguyen et al.

0 2 4 6 8 10
0

0.5

1

;
te

m
p

0 2 4 6 8 10
0

0.5

1

;
F

C
I

0 2 4 6 8 10

Time (seconds)

0

0.5

1

;
A

F
R

Violation

Figure 3: Falsi�cation result of the APC system. �e coun-
terexample pair of traces found by Breach for the robust be-
havior hyperpropperty.

purpose of the APC is to regulate the air �ow rate into the FC stack
using multiple actuators. �e FC stack generates electrical power
for the vehicle using a mixture of air and hydrogen. �e FC stack
only operates under restricted conditions, such as temperature,
pressure and moisture level within the stack. An excess of moisture
in the stack will impede the performance while moisture de�ciency
could permanently damage the FC stack. �us, to achieve high
performance while still operating the system in a safe regime, the
controller is required to accurately regulate the air �ow rate.

�e closed-loop Simulink model of the APC system is complex;
it contains more than 7,000 Simulink blocks such as integrators, sat-
urations, S-Function blocks, lookup tables, and data store memory
blocks. �e model has two input signals including i) the ambient
temperature and ii) the fuel cell current request (FCI). Details of the
system, such as units and expected signal ranges, are suppressed due
to proprietary concerns. Intuitively, an FCI value is proportional
to the desired torque requested by the driver, which is ultimately
based on the accelerator pedal angle. �e output of the APC system
is an air �ow rate (AFR). �e purpose of the controller model is to
regulate the AFR to some desirable reference value. To ensure the
APC system works properly, for some small perturbations of the
ambient temperature and FCI values, the di�erences in AFR values
should be bounded within a desirable range. In other words, to
avoid unexpected changes in the air �ow rate at the inlet of an FC
stack, which may cause undesirable behavior, the system should
satisfy the robust behavior hyperproperty. �e robust behavior
hyperproperty of the APC system can be formalized as follows,

ϕAPC
∆
= {W ∈ P | ∀w,w′ ∈W :
(dsup (wtemp ,w

′
temp) ≤ ϵ1 ∧ dsup (wFCI ,w

′
FCI) ≤ ϵ2)

=⇒ dsup (wAFR ,w
′
AFR) ≤ ϵ3)}, (11)

which can be translated to the following STL formula using Algo-
rithm 1 to perform the falsi�cation task,

ϕ ′APC
∆
= �[0,T]((ρtemp ≤ ϵ1 ∧ ρFCI ≤ ϵ2) =⇒ ρAFR ≤ ϵ3),

(12)

where a trace w is composed of the temperature and FCI input
signals wtemp and wFCI respectively, and the AFR output signal
wAFR . Here, we create a new model including two copies of the
original APC system; and a trace p ∆

= (ρtemp , ρFCI , ρAFR) of the
new model captures the input-output di�erence between two traces
w,w′ of the original model, for instance, ρtemp (t) = | |wtemp (t) −
w ′temp (t)| |.

�e result of falsi�cation of the robust behavior hyperpropety of
the APC system is shown in Figure 3, where the blue lines present
the distance signals ρtemp , ρFCI , ρAFR respectively, and the red
lines demonstrate their corresponding bounds. Here, the parameter
values selected by a design engineer are normalized to 0.5. �at
is, ϵ1 = 0.5, ϵ2 = 0.5, and ϵ3 = 0.5. �e sampling time is 0.001024
seconds and the simulation time T is 10 seconds. For proprietary
reasons, we normalize the quantities and suppress the units for
the data shown in the �gure. �e counterexample pairs of traces
reported by Breach demonstrate a behavior where the output dif-
ference exceeds its allowed bounds when the input di�erences are
still less than their given thresholds, which is a violation of For-
mula 12. Finding this counter-example is signi�cant, as it can help
automotive control engineers to improve the controller design to
eliminate such an undesirable behavior of the APC system.

7.2 Fault-tolerant Fuel Model
We consider a fault-tolerant fuel (FTF) model that includes both
Simulink blocks and State�ow charts5. �e model has two external
input signals, engine speed and thro�le command, and one output
signal, which is the e�ective air-fuel ratio inside the combustion
chamber. �e model also contains four sensors measuring thro�le
angle, engine speed, the amount of residual oxygen in the exhaust
gas (EGO), and the manifold absolute pressure (MAP). �e controller
has three di�erent control strategies: a normal operation mode,
which is used when no sensor faults are present, a fault mitigation
mode, which is used when one sensor fault has occurred, and a
mode that disables fuel control, which is used when two or more
sensor faults are detected. We only consider the normal and fault
mitigation modes for this example. �e goal of the controller is to
regulate the air-fuel ratio output, denoted as λ, so that it remains
within a desirable range, despite a failure in at most one sensor.

In this case study, we evaluate the ability of the FTF controller
to tolerate an engine speed sensor fault. In the original version of
the model, a speed sensor fault consists of the speed sensor output
being set to 0.0 rad/sec; the controller detects the fault when the
sensor reading equals 0.0. In the modi�ed version that we use, we
do not �x the controller mode based on the sensor reading, but
instead we evaluate the controller performance when either the
normal or fault mitigation modes are selected. In the modi�ed
version of the model that we use, a speed sensor fault consists of a
sensor output producing a �xed but randomly selected value in the
sensor range [0, 620] rad/sec. �is kind of sensor fault could occur
when an a�acker uses a sensor spoo�ng approach to inject incorrect
measurements into the sensor readings or when a real fault occurs
in the speed sensor. We use the robust control invariance property
to specify desired controller performance in the presence of the

5We use a modi�ed version of the FTF model available at h�ps://www.mathworks.
com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

https://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
https://www.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html

Hyperproperties of Real-Valued Signals MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria

indicated class of sensor faults:

ϕFT F
∆
= ∃v.∀v′.�[τ ,∞](dsup (vu ,v ′u) = 0
=⇒ 0.8λr ef ≤ v ′λ ≤ 1.2λr ef), (13)

where λr ef is the reference value of the air-fuel ratio λ, and τ is the
se�ling time. Here, a trace variable v can be mapped to a trace w
composed of the controller input wu corresponding to a controller
mode decision, a disturbance wd representing the �xed random
sensor input injected into the speed sensor, and an output wλ .In
general, we cannot falsify Formula 13 according to the discussion
shown in Table 1; however, for systems like the FTF model that
have a �nite set of control strategies, we can e�ectively perform
falsi�cation by creating a new model that contains copies of the
original system, one copy for each control mode (two copies, in this
case). �e external input (the speed sensor reading) is connected to
each of the copies of the model. �e speci�cation ϕFT F is converted
to the following equivalent formula in standard STL:

ϕ̂FT F
∆
= ∀wd .�[τ ,∞](0.8λr ef ≤ wλ1 ≤ 1.2λr ef
∨ 0.8λr ef ≤ wλ2 ≤ 1.2λr ef), (14)

where wλ1 and wλ2 are the air-fuel ratios of the �rst and second
copies of the model. We note that Formula 14 is arrived at by apply-
ing the quantitative semantics provided in Sec. 4; the disjunction
in Formula 14 appears due to the ∃ quanti�er in Formula 13, which
e�ectively applies a max operator over the two available control
modes. �e formula ϕ̂FT F can be tested using the falsi�cation
methods for traditional STL available in Breach.

Figure 4 illustrates the falsi�cation result of the FTF model. �e
blue lines correspond to a simulation trace representing the falsi-
fying behavior, the green line illustrates an instance of the correct
speed, and the red lines represent the error bound of λ, where
τ = 10 seconds, T = 50 seconds, and λr ef = 14.6. Based on the
results, we can conclude that there exists a trace, which includes
outputs wλ1 and wλ2 that both evolve beyond the tolerance bound
regardless of whether the controller operates in the normal mode
or the fault mitigation mode (i.e., the performance requirement
is violated despite which control mode is used). �is experiment
demonstrates the capability of using a falsi�cation approach to
automatically test hyperproperties for CPSs.

8 CONCLUSION AND FUTUREWORK
In this paper, we represented the �rst study of the hyperproperties
of CPSs. We de�ned a new temporal logic, called HyperSTL, to
express several hyperproperties including stability, security, and
safety for CPSs. HyperSTL allows us to e�ectively specify more
general requirements of CPS rather than STL as it can express the
relationships between multiple execution traces. �e testing frame-
work of t-HyperSTL, a fragment of HyperSTL, was also given and
applied to falsify the robust behavior hyperproperty of a hydrogen
fuel-cell powertrain model, and the robust control invariance hy-
perproperty of the fuel control model under a fault data injection
a�ack. We also discuss the feasibility of performing the falsi�cation
and veri�cation for various classes of hyperproperties for CPSs.

0 10 20 30 40 50
0

300

600

S
pe

ed

0 10 20 30 40 50
0

10

20

30

w
6

1

= = 10

0 10 20 30 40 50

Time (seconds)

0

10

20

30

w
6

2

= = 10

Figure 4: Apair of falsifying traces found byBreach illustrat-
ing the FTF model cannot tolerate the fault under a speed
sensor fault.

Future Work. We �rst plan to introduce a library of HyperSTL
fomulae that encapsulates di�erent general classes of hyperprop-
erties of CPS including those presented in this paper. Second, the
falsi�cation algorithm of HyperSTL proposed in the paper is in-
complete as it relies on self-composition (i.e. making copies of a
system) and only falsi�es a restricted class of hyperproperties. �us,
extending the falsi�cation algorithm to bypass self-composition
to falsify more interesting hyperproperties is planned. Also, the
monitoring algorithms of HyperLTL recently proposed in [4, 12]
could be applied to HyperSTL.

9 ACKNOWLEDGMENTS
�e authors would like to acknowledge Borzoo Bonakdarpour and
his research group for insightful comments that helped us re�ne our
de�nition of HyperSTL. We would also like to thank the anonymous
reviewers for their feedback. �e material presented in this paper
is based upon work supported by the National Science Founda-
tion (NSF) under grant numbers CNS 1464311, EPCN 1509804, and
SHF 1527398, the Air Force Research Laboratory (AFRL) through
contract numbers FA8750-15-1-0105, and FA8650-12-3-7255 via sub-
contract number WBSC 7255 SOI VU 0001, and the Air Force O�ce
of Scienti�c Research (AFOSR) under contract numbers FA9550-15-
1-0258 and FA9550-16-1-0246. �e U.S. government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions,
�ndings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily re�ect
the views of AFRL, AFOSR, or NSF.

REFERENCES
[1] Houssam Abbas, Bardh Hoxha, Georgios Fainekos, and Koichi Ueda. 2014.

Robustness-guided temporal logic testing and veri�cation for stochastic cyber-
physical systems. In Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, 1–6.

[2] Houssam Abbas, Hans Mi�elmann, and Georgios Fainekos. 2014. Formal prop-
erty veri�cation in a conformance testing framework. In Formal methods and
models for codesign (memocode), 2014 twel�h acm/ieee international conference on.
IEEE, 155–164.

MEMOCODE ’17, September 29-October 2, 2017, Vienna, Austria Nguyen et al.

[3] Aditya Agrawal, Gyula Simon, and Gabor Karsai. 2004. Semantic Translation of
Simulink/State�ow Models to Hybrid Automata Using Graph Transformations.
Electronic Notes in �eoretical Computer Science 109 (2004), 43 – 56.

[4] Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime veri�cation of k-safety
hyperproperties in HyperLTL. In Computer Security Foundations Symposium
(CSF), 2016 IEEE 29th. IEEE, 239–252.

[5] Mohammad Al Faruque, Francesco Regazzoni, and Miroslav Pajic. 2015. Design
methodologies for securing cyber-physical systems. In Proceedings of the 10th
International Conference on Hardware/So�ware Codesign and System Synthesis.
IEEE Press, 30–36.

[6] Mack W Alford, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara
Liskov, Geo� P Mullery, and Fred B Schneider. 1985. Distributed systems: methods
and tools for speci�cation. An advanced course. Springer-Verlag New York, Inc.

[7] Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. 2004. Secure information
�ow by self-composition. In Computer Security Foundations Workshop, 2004.
Proceedings. 17th IEEE. IEEE, 100–114.

[8] Omar Beg, Taylor Johnson, and Ali Davoudi. 2017. Detection of False-data Injec-
tion A�acks in Cyber-Physical DC Microgrids. IEEE Transactions on Industrial
Informatics (2017).

[9] Nam Parshad Bhatia and Giorgio P Szegö. 2002. Stability theory of dynamical
systems. Springer Science & Business Media.

[10] Eli Biham and Adi Shamir. 1997. Di�erential fault analysis of secret key cryp-
tosystems. In Annual International Cryptology Conference. Springer, 513–525.

[11] F. Blanchini. 1999. Survey Paper: Set Invariance in Control. Automatica 35, 11
(Nov. 1999), 1747–1767.

[12] Noel Bre�, Umair Siddique, and Borzoo Bonakdarpour. 2017. Rewriting-Based
Runtime Veri�cation for Alternation-Free HyperLTL. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
77–93.

[13] Jeremy W Bryans, Maciej Koutny, Laurent Mazaré, and Peter YA Ryan. 2008.
Opacity generalised to transition systems. International Journal of Information
Security 7, 6 (2008), 421–435.

[14] Michael R Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micinski,
Markus N Rabe, and César Sánchez. 2014. Temporal logics for hyperproperties.
In International Conference on Principles of Security and Trust. Springer, 265–284.

[15] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210.

[16] Alexandre Donzé. 2010. Breach, a toolbox for veri�cation and parameter synthe-
sis of hybrid systems. In Computer Aided Veri�cation. Springer, 167–170.

[17] Alexandre Donzé, �omas Ferrere, and Oded Maler. 2013. E�cient robust moni-
toring for STL. In Computer Aided Veri�cation. Springer, 264–279.

[18] Georgios E Fainekos, Antoine Girard, and George J Pappas. 2006. Temporal logic
veri�cation using simulation. In International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 171–186.

[19] �oshitha T Gamage, Bruce M McMillin, and �omas P Roth. 2010. Enforcing
information �ow security properties in cyber-physical systems: A generalized
framework based on compensation. In Computer So�ware and Applications Con-
ference Workshops (COMPSACW), 2010 IEEE 34th Annual. IEEE, 158–163.

[20] �oshitha T. Gamage, Bruce M. McMillin, and �omas P. Roth. 2010. Enforcing
Information Flow Security Properties in Cyber-Physical Systems: A Generalized
Framework Based on Compensation.. In COMPSAC Workshops. IEEE Computer
Society, 158–163.

[21] Antoine Girard and George J Pappas. 2006. Veri�cation using simulation. In
International Workshop on Hybrid Systems: Computation and Control. Springer,
272–286.

[22] Joseph A Goguen and José Meseguer. 1982. Security policies and security models.
In Security and Privacy, 1982 IEEE Symposium on. IEEE, 11–11.

[23] �omas A. Henzinger, Jan Otop, and Roopsha Samanta. 2016. Lipschitz Robustness
of Timed I/O Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 250–267.

[24] Bardh Hoxha, Adel Dokhanchi, and Georgios Fainekos. [n. d.]. Mining parametric
temporal logic properties in model-based design for cyber-physical systems.
International Journal on So�ware Tools for Technology Transfer ([n. d.]), 1–15.

[25] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia.
2015. Mining requirements from closed-loop control models. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 34, 11 (2015),
1704–1717.

[26] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. 1998. Side channel
cryptanalysis of product ciphers. In European Symposium on Research in Computer
Security. Springer, 97–110.

[27] Paul Kocher, Joshua Ja�e, and Benjamin Jun. 1999. Di�erential power analysis.
In Annual International Cryptology Conference. Springer, 388–397.

[28] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan, and Srivaths
Moderator-Ravi. 2004. Security as a new dimension in embedded system design.
In Proceedings of the 41st annual Design Automation Conference. ACM, 753–760.

[29] Paul C Kocher. 1996. Timing a�acks on implementations of Di�e-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[30] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Ho-
vav Shacham, et al. 2010. Experimental security analysis of a modern automobile.
In Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 447–462.

[31] Chunxiao Li, Anand Raghunathan, and Niraj K Jha. 2011. Hijacking an insulin
pump: Security a�acks and defenses for a diabetes therapy system. In e-Health
Networking Applications and Services (Healthcom), 2011 13th IEEE International
Conference on. IEEE, 150–156.

[32] Lanchao Liu, Mohammad Esmalifalak, Qifeng Ding, Valentine A Emesih, and
Zhu Han. 2014. Detecting false data injection a�acks on power grid by sparse
optimization. IEEE Transactions on Smart Grid 5, 2 (2014), 612–621.

[33] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-
tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[34] Kebina Manandhar, Xiaojun Cao, Fei Hu, and Yao Liu. 2014. Detection of faults
and a�acks including false data injection a�ack in smart grid using kalman �lter.
IEEE transactions on control of network systems 1, 4 (2014), 370–379.

[35] Daryl McCullough. 1987. Speci�cations for multi-level security and a hook-up.
In Security and Privacy, 1987 IEEE Symposium on. IEEE, 161–161.

[36] John McLean. 1990. Security models and information �ow. In Research in Security
and Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on. IEEE,
180–187.

[37] John McLean. 1994. A general theory of composition for trace sets closed
under selective interleaving functions. In Research in Security and Privacy, 1994.
Proceedings., 1994 IEEE Computer Society Symposium on. IEEE, 79–93.

[38] Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas Diggavi, and
Paulo Tabuada. 2015. Secure state estimation: optimal guarantees against sen-
sor a�acks in the presence of noise. In Information �eory (ISIT), 2015 IEEE
International Symposium on. IEEE, 2929–2933.

[39] Yilin Mo, Ti�any Hyun-Jin Kim, Kenneth Brancik, Dona Dickinson, Heejo Lee,
Adrian Perrig, and Bruno Sinopoli. 2012. Cyber–physical security of a smart
grid infrastructure. Proc. IEEE 100, 1 (2012), 195–209.

[40] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancić,
Aarti Gupta, and George J. Pappas. 2010. Monte-carlo Techniques for Falsi�cation
of Temporal Properties of Non-linear Hybrid Systems. In Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and Control (HSCC
’10). ACM, New York, NY, USA, 211–220.

[41] Markus N Rabe. 2016. A temporal logic approach to information-�ow control.
(2016).

[42] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. 2004. Tamper resis-
tance mechanisms for secure embedded systems. InVLSI Design, 2004. Proceedings.
17th International Conference on. IEEE, 605–611.

[43] Pankaj Rohatgi. 2009. Electromagnetic a�acks and countermeasures. In Crypto-
graphic Engineering. Springer, 407–430.

[44] Andrei Sabelfeld and David Sands. 2005. Dimensions and principles of declassi�-
cation. InComputer Security Foundations, 2005. CSFW-18 2005. 18th IEEEWorkshop.
IEEE, 255–269.

[45] Florian Sagste�er, Martin Lukasiewycz, Sebastian Steinhorst, Marko Wolf,
Alexandre Bouard, William R Harris, Somesh Jha, �omas Peyrin, Axel
Poschmann, and Samarjit Chakraborty. 2013. Security challenges in automo-
tive hardware/so�ware architecture design. In Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium, 458–463.

[46] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava. 2013. Non-
invasive Spoo�ng A�acks for Anti-lock Braking Systems. In Proceedings of the
15th International Conference on Cryptographic Hardware and Embedded Systems
(CHES’13). Springer-Verlag, Berlin, Heidelberg, 55–72.

[47] Geo�rey Smith. 2009. On the foundations of quantitative information �ow. In
International Conference on Foundations of So�ware Science and Computational
Structures. Springer, 288–302.

[48] Jiang Wan, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. 2015.
Security-aware functional modeling of cyber-physical systems. In Emerging
Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE,
1–4.

[49] J Todd Wi�bold and Dale M Johnson. 1990. Information �ow in nondetermin-
istic systems. In Research in Security and Privacy, 1990. Proceedings., 1990 IEEE
Computer Society Symposium on. IEEE, 144–161.

[50] Zhe Xu and A Agung Julius. 2016. Census signal temporal logic inference for
multiagent group behavior analysis. IEEE Transactions on Automation Science
and Engineering (2016).

[51] Steve Zdancewic and Andrew C Myers. 2003. Observational determinism for
concurrent program security. In Computer Security Foundations Workshop, 2003.
Proceedings. 16th IEEE. IEEE, 29–43.

[52] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Fränzle. 2015. Formal Veri�-
cation of Simulink/State�ow Diagrams. In Automated Technology for Veri�cation
and Analysis - 13th International Symposium, Shanghai, China. 464–481.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Hyperproperties of Real-Valued Signals
	3.1 Beyond Hyperproperties?

	4 HyperSTL
	4.1 t-HyperSTL

	5 Falsifying alternation-free t-HyperSTL
	6 Falsifying k-alternation t-HyperSTL
	7 Case study
	7.1 Airpath Control Model
	7.2 Fault-tolerant Fuel Model

	8 Conclusion and Future Work
	9 Acknowledgments
	References

