
Mission Planning for Multiple Vehicles
with Temporal Specifications using UxAS

Luan V. Nguyen ∗ Bardh Hoxha ∗∗ Taylor T. Johnson ∗∗∗

Georgios Fainekos ∗∗∗∗

∗University of Texas at Arlington, Arlington, TX 76019, USA.
∗∗ Southern Illinois University, Carbondale, IL 62901, USA.
∗∗∗Vanderbilt University, Nashville, TN 37023, USA.
∗∗∗∗Arizona State University, Tempe, AZ 85287, USA.

Abstract: In this paper, we present extensions to Unmanned Systems Autonomy Services
(UxAS) to handle mission specifications that require a synchronization of task execution. UxAS
uses Process Algebra (PA) as a formal language to specify mission requirements for unmanned
aerial vehicle (UAV) operations. However, the current implementation of PA in UxAS utilizes
assigned semantics which does not guarantee the order of task completion and is unable to
provide a mission planning required vehicle-synchronization. To enable the capability of UxAS
in operating synchronized mission specifications, we introduce a notion of Synchronized Process
Algebra (SPA) which extends PA by adding a synchronized composition operator to the syntax
of PA. Such an operator allows us to specify the task’s duration and enforce the next task is
executed after the previous one has terminated. Moreover, we provide a new service in UxAS,
called Temporal Service (TS) to control the flow of the planning process with respect to timing
specifications. We apply SPA and TS to specify and operate the mission specification of a forest
fire rescue scenario required the synchronized arrivals of multiple UAVs.

Keywords: Motion Planning, Formal Specifications, UxAS, Process Algebra

1. INTRODUCTION

One of the fundamental problems in achieving vehicle
autonomy is motion planning. Given a set of tasks, a
single or multiple robots should be able to autonomously
execute them with little to no human intervention. Due to
its significance, this problem has been extensively studied
in the past Ryan et al. (2004); LaValle (2006); Shima and
Rasmussen (2009). Temporal logic such as Linear Tempo-
ral Logic (LTL) is one of the most common formalisms
used as a specification language for the motion planing
problem of single/multi-agent systems. Formal methods
such as model checking and automata-based abstraction
can be utilized to address motion planning and controller
synthesis problems with respect to specifications given
as temporal logic formulas. For example, the authors in
Fainekos et al. (2009); Kloetzer and Belta (2007) con-
vert LTL specifications to Büchi automata and create
abstraction models for the dynamical systems. Then, they
utilize automata-based methods to synthesize controllers
for single-vehicle mission planning. In Ding et al. (2014),
the authors propose a planning approach that enables
receding horizon control for finite deterministic systems
with respect to LTL formulas. On the other hand, the
motion planning problem of multi-vehicle systems subject
to both global LTL specifications for the vehicle team and
local LTL specifications for each individual vehicle has

? The material presented in this paper is based upon the work
performed at the Summer of Innovation organized by AFRL and
WBI at Dayton, Ohio, 2017. The authors sincerely appreciate Derek
Kingston and Laura Humphrey for their help in understanding the
UxAS system and AMASE simulator.

been studied in Guo and Dimarogonas (2015); Bhatia et al.
(2011); Karaman and Frazzoli (2008).

The computational complexity of the aforementioned
methods may pose a challenge for real-world applications
of motion planing with multiple vehicles and complex
specifications. For instance, the model checking algorithm
with respect to LTL specifications is PSPACE-Complete
Schnoebelen (2002). The algorithm by Kabanza (1995),
in the worst case, is exponential in terms of the size of
the input goal and greatest action duration. Similarly,
the computational costs of automata-based approaches are
rapidly-growing regarding the length of a specification and
the level of abstraction of a dynamical system.

Karaman et al. (2009) utilize Process Algebra (PA) as a
specification language for unmanned aerial vehicle (UAV)
mission planning. The proposed algorithm can guarantee
to generate a feasible plan that satisfies a mission specifica-
tion in polynomial time. This approach was implemented
in the Unmanned Systems Autonomy Services (UxAS)
framework 1 developed by the Air Force Research Lab-
oratory (AFRL). UxAS is a collection of software modules
that communicate on a shared communication channel,
and generate task assignments and waypoint paths for
one or more UAVs that satisfy a PA mission specification.
Notwithstanding the PA language is expressive enough to
define many mission specifications, its current implemen-
tation within UxAS does not support cooperative missions
requiring task/vehicle-synchronization. In fact, the current

1 The tutorial, project description and source codes of UxAS are
available at: https://github.com/afrl-rq/OpenUxAS



framework utilizes task-assignment semantics, i.e., a task
is taken care of if it is assigned. In other words, only
the order of task assignment is enforced, not the order
of task completion; and this has been done for the sake
of finding an optimal plan for a mission composed of
independent tasks. However, the current implementation
of UxAS makes it difficult to handle either a mission which
enforces completion of a part of the mission specification
before beginning another, or one requires a synchronized
coordination between multiple UAVs.

Contributions. In this work, we extend UxAS to enable
more control over timing and task completion for mission
specifications that require coordination between vehicles.
Indeed, we extend the PA language with a synchronized
operator which enforces completion of sub-tasks in UxAS.
Based on that, we implement a new service within UxAS
to handle a vehicle-synchronization as well as an execution
order of complex tasks using multiple UAVs. We demon-
strate our contributions with a forest fire rescue mission.

2. BACKGROUND

2.1 UxAS Framework

UxAS is a comprehensive software system architecture
that enables autonomous capabilities on-board unmanned
systems 1 . UxAS has been developed by the AFRL for
more than a decade. The system provides a list of mod-
ular services that share a single, broadcast, channel of
communication. All messages are specified as xml files. To
accomplish a mission, UxAS takes the following inputs:

• Vehicle Configuration: describing operating speed, alti-
tude, and maximum bank angle as well as the sensor
configurations of a vehicle,

• Vehicle State: specifying the state information of the ve-
hicles such as position, actual speed, current waypoint,
current active task, and the state of the sensors,

• Task Configuration: including task’s ID, eligible vehicle
assigned to the task and all requirements of the task
that need to be satisfied,

• Automation Request: a script initializes UxAS and
requests a set of tasks to be completed by a set of
eligible vehicles in a particular airspace configuration,
and specifies a relationship between tasks defined in a
PA string which needs to be satisfied.

The plan builder service in UxAS calculates a cost matrix
and constructs different mission plans for all of the task
assignments. The final plan will then be published in an
automation response. UxAS provides a set of complex,
automated search tasks that handle common search and
surveillance patterns such as point search, line search,
area search, pattern search, etc. Each automated task
is constructed based on its specific waypoint-based path
planning and sensor steering handling that can be cus-
tomized by changing its parameter values such as a sensor
view angle, standoff distance, particular angle of approach
(for details see Kingston et al. (2016)).

2.2 Process Algebra

UxAS uses Process Algebra (PA) as a formal language to
specify mission requirements for UAV operations Baeten
(2004); Fokkink (2013). One of the advantages of PA as

a mission specification language is that it allows us to
efficiently construct a feasible (and potentially optimal)
plan that meets the mission specification in polynomial
time Karaman et al. (2009).

Syntax of PA. Let A be a finite set of actions and P be a
set of PA terms defined over A. The syntax of PA is then
inductively defined as follows,

• each action α ∈ A is in P,

• for every p, p′ ∈ P, we also have p+ p′ ∈ P, p ‖ p′ ∈ P,
and p · p′ ∈ P.

The operators (+), (‖), (·) respectively indicate the alter-
native, parallel, and sequential relationships between two
PA terms p and p′. Intuitively, the composition p + p′

specifies that it can either execute a behavior of p or p′.
The composition p ‖ p′ specifies that both PA terms should
execute at the same time. The composition p · p′ will first
execute p, and then execute p′ right after p terminates.

Semantics of PA. A transition p
α−→ p′ represents that a

process p evolves to a process p′ by executing α. A special
process, denoted as 4, represents the terminated process
that has no action to execute and cannot evolve to any
other process. Also, each action can be considered as a PA
term; a process p corresponds to a term α ∈ A such as p =
α, can execute α and then terminate which is denoted as

α
α−→ 4. A sequence of actions λ = {α1, α2, ..., αn} is called

a trace of a PA term p0 if there exists a set of processes

p1, p2, ..., pn ∈ P such that p0
α1−→ p1

α2−→ ...
αn−−→ pn,

where pn = 4. Intuitively, a trace of a process represents a
behavior of the process specified over a sequence of actions
leading to termination. We denote Λp0

as a set of all traces
that a process p0 can execute.

Following, given α ∈ A and p1, p
′
1, p2, p

′
2 ∈ P, the

operational semantics of PA can be defined as follows,

p1
α−→ 4

p1 + p2
α−→ 4

p1
α−→ p′1

p1 + p2
α−→ p′1

p2
α−→ 4

p1 + p2
α−→ 4

p2
α−→ p′2

p1 + p2
α−→ p′2

p1
α−→ 4

p1 ‖ p2
α−→ p2

p1
α−→ p′1

p1 ‖ p2
α−→ p′1 ‖ p2

p2
α−→ 4

p1 ‖ p2
α−→ p1

p2
α−→ p′2

p1 ‖ p2
α−→ p1 ‖ p′2

p1
α−→ 4

p1 · p2
α−→ p2

p1
α−→ p′1

p1 · p2
α−→ p′1 · p2

.

For each transition rule, the numerator specifies a set of
premises which is a set of possible transitions of a PA
term; and the denominator describes a conclusion which
is a transition allowed to execute by the above premises.

3. PROCESS ALGEBRA SPECIFICATION IN UXAS

In this section, we review how PA is utilized to specify
mission specifications for multiple UAVs within UxAS.
Mission specifications are sent to UxAS through an au-
tomation request. This automation request includes the
relationship between multiple tasks in which each of them
is a combination of different atomic objectives.

Definition 3.1. An atomic objective is a tuple θ
∆
=

{Lsθ, Leθ, T eθ , vθ, Ivθ ,Fvθ} such that:

• Lsθ ∈ R2 is the starting point where a vehicle has to
reach in order to start a task execution,

• Leθ ∈ R2 is the exit point which represents the location
that a vehicle should reach after executing a task,



• T eθ ∈ R≥0 is the total execution time,

• vθ ∈ V is the eligible vehicle to accomplish a task,

• Ivθ ,Fvθ ∈ QV is the vehicle’s configuration and state
before and after executing a task, respectively,

where QV is the set of all configurations and states of
V. Examples of atomic objectives in UxAS include point
search, area search, classification, attack, object tracking,
etc. (see Rasmussen and Kingston (2008)). Moreover,
UxAS allows a mission specification that involves logical
and temporal constraints to be specified as a combination
of individual tasks, where each task is represented by a PA
term defined on a set of atomic objectives.

Example 3.2. Consider the following scenario. An avalanche
has occurred and we need to search for missing hikers.
There are two particular points of interest A, B and
an area C where there is a high probability of finding
the missing hikers. A set of three UAVs {v1, v2, v3} are
available to execute the mission in an order such that both
of A and B locations can be searched at the same time
before doing an area search at C. Also, either v1 or v2 can
go to A, only v3 can go to B, and all of UAVs can travel
to C. Then, a process algebra string Φ that represents a
high-level specification of the mission can be expressed as:
Φ = ((θA∗v1

+ θA∗v2
) ‖ θB∗v3

) · (θC∗v1
+ θC∗v2

+ θC∗v3
),

where θA∗v1
denotes the atomic objective of searching the

location A using v1 and the rest of atomic objectives can
be interpreted in the same fashion.

Remark 3.3. The PA semantics currently implemented in
UxAS is assigned semantics. Such semantics does not guar-
antee the order of task completion and is unable to provide
a mission planning required vehicle-synchronization. In
other words, a task starts immediately whenever there is
an eligible vehicle that is ready to execute the task. As an

example, the semantic rule p1

α−→4
p1·p2

α−→p2

cannot be applied as

p2 may start before the termination of p1. This implemen-
tation is for the sake of achieving an optimal plan for a
mission comprised of independent tasks. In the previous
example, there is always a case such as the area search at
C is executed before either the point search tasks at A or B
are completed. This will be an issue if we strictly want each
task to execute following the order specified by a PA string.
Moreover, because this semantics does not ensure that a
task can be executed in a synchronized way, it limits the
capability of UxAS in providing cooperative task planning
for multi-UAVs systems. For instance, suppose that there
is a heavy snowfall at the area C that significantly reduces
the quality of an image captured by a camera attached on
one UAV, it is essential that all UAVs can synchronize at
C, and then execute the area search together to acquire an
adequately high-resolution image. As a result, it motivates
the work of applying synchonization and adding a new
service into UxAS to handle a vehicle-synchronization as
well as an execution order for complex tasks using multiple
UAVs.

3.1 Optimal Planning for Non-synchonized Process Algebra
Specifications in UxAS

Next, we review the algorithm used to find a feasible (may
be optimal for some extant) planning for non-synchronized
mission specifications by Karaman et al. (2009), which

provides the whole basis for our extensions to UxAS
presented in Section 4 to handle mission specifications that
requires the synchronized arrivals of multiple UAVs.

Definition 3.4. Let Θ be a set of atomic objectives and V
be a list of UAVs, a single schedule sv of a UAV v ∈ V is
a sequence of atomic objective and instance of execution
time pairs, written as sv = ((θ1, tθ1), ..., (θk, tθk)) such that

• θi ∈ Θ, tθi ∈ R≥0 for i ∈ {1, 2, . . . , k}, and

• tθi+1
− tθi ≥ T eθi + T tθi+1

for i ∈ {1, 2, . . . , k − 1},

where T tθi+1
denotes a time for a UAV v travels from the

exit point of θi to the starting point of θi+1. From the
above definition, an atomic objective θi ∈ Θ is scheduled
to be executed at time instance ti ∈ R≥0 by vehicle v if
(θi, tθi) ∈ sv. Also, we note that tθi+1

must be computed
and chosen so that a UAV has enough time to complete
the previous atomic objective θi and travel to the starting
point of θi+1. Each single schedule sv can be accomplished
with a completion time τ csv = tθk + T eθk , where θk is the
last atomic objective assigned to v.

We call ζ as a complete schedule, which is a set of single
vehicle schedules that contains exactly one single vehicle
schedule for each UAV. We can associate ζ with different
types of cost functions to design some optimal mission
planning. One instance of that is to find the minimum
value of the total completion time of all UAVs:

Ω(ζ) = min
∑
v∈V

τ csv (1)

Definition 3.5. An observation δ of a complete schedule ζ
is a sequence of atomic objectives, i.e., δ = (θ1, θ2, ..., θk)
which satisfies the following conditions,

• ∀θi ∈ δ, θi is scheduled in ζ,

• ∃t̄i ∈ R≥0 so that tθi ≤ t̄i ≤ tθi + T eθi ,
• t̄i < t̄j if θi precedes θj in δ,

where t̄i, t̄j are time instances associated with θi and θj ,
respectively. We note that the observation of a complete
schedule may not be unique; and for all atomic objective
θi in δ, there exists one or more time instance t̄i within the
execution interval of θi such that the ordering of those time
instances is the same as that of their corresponding atomic
objectives in δ. We denote the set of all observations of a
given complete schedule ζ as Πζ .

Problem 3.6. Given a set of atomic objectives Θ, a list of
UAVs V, the problem of finding an optimal planning that
satisfies a PA specification p̂ is to find a complete schedule
ζ such that:

• any observation δ of ζ is a trace of p̂, i.e., Πζ ⊆ Λp̂,

• the cost function Ω(ζ) is optimized.

Branch-and-bound Algorithm. To solve the optimal
planning for PA specifications using multiple UAVs, UxAS
exploits the branch-and-bound tree search algorithm pro-
posed by Rasmussen and Shima (2006). Briefly, in this
algorithm, a PA specification p̂ is constructed as a tree
structure where each node represents a pair of atomic
objective and its associated UAV. Each node of the tree
except leaf nodes may contain one or more child nodes
that branch the tree into the more specific sub-trees. A
path of the tree which represents a possible assignment



(i.e., a trace of p̂) is a sequence of connected nodes starting
from the trunk node to a leaf node. Hence, the two-
phases algorithm incorporating a greedy, best-first search
heuristic with branch-and-bound mechanism can be used
to efficiently determine the optimal path.

The search is started from the trunk node of the tree.
For each node, the shortest Euclidean distances between
it and the set of atomic objectives associated with different
UAVs that can be possibly assigned in the next layer
of the tree are calculated. The best node in the current
layer of the tree which yields the smallest distance, i.e.,
the minimum time complete schedule will be chosen. The
process repeats until it reaches a leaf node representing
a candidate optimal plan. Such a solution will be served
as an upper bound of the cost of a PA specification and
used to perform a branch and bound evaluation. The best-
first search procedure is then reversibly applied starting
from the leaf node associated with the candidate optimal
solution to obtain a lower bound on the cost of the same
specification using a different UAV in the group. These
upper and lower bounding search procedures iteratively
traverse upwards and downwards of the tree to prune
out all infeasible solutions and improve the candidate
solution. The algorithm is terminated with the actual
optimal solution, i.e., the most efficient task ordering
after all nodes of the tree have either been pruned or
evaluated Rasmussen and Shima (2006).

The main advantage of using this branch-and-bound al-
gorithm is that it can provide a feasible plan within a
polynomial time bound corresponding to the length of a
PA specification. However, the current implementation of
the algorithm in UxAS does not support a specification
that requires vehicle-synchronization. To acquire a feasible
plan for a synchronized mission, we must take account of
a loitering time required for each UAV to be synchronized
with others before executing the task. As a result, the
planning algorithm should be computed with respect to
the constraint such that the assigned UAV has enough time
to complete its previous atomic objective, fly to the entry
point of the next one, and wait there until other UAVs are
synchronized. Thus, adding the capability to determine a
feasible plan with respect to the synchronized arrivals of
multiple UAVs is a contribution of this paper.

4. SYNCHRONIZED PROCESS ALGEBRA
SPECIFICATION IN UXAS

In this section, we present an extension of PA specification
language and a new service to enable the definition of more
complex tasks with respect to timing.

4.1 Synchronized Process Algebra

We introduce a notion of Synchronized Process Algebra
(SPA), which is an extension of PA to specify the duration
of a task and enforce that the next task is executed after
the previous task has terminated. The general idea of SPA
is to enable a more expressive language to define synchro-
nized mission specifications. In fact, SPA is extend from
PA with a synchronization functionality, which defines the
point where the vehicles should synchronize, i.e., complete
all their previous tasks so that they can initialize the next
task together. We define a new sequential composition op-
erator S (besides the parallel composition) in SPA, which

enforces synchronous execution of the parallel processes.
The semantic rule of S is defined as follows,

p1
α−→ p′1 p2

α−→ p′2

S(p1 ‖ p2)
α−→ p′1 ‖ p

′
2

,

where α is a synchronized action. Also, the PA string
p1Sp2 in UxAS enforces the sequential relationship be-
tween p1 and p2 specified in Section 2.2, which means p1
should completely terminate before p2 can start. We note
that in UxAS, beside S operator, we can use a notation of
Sδ to specify a synchronized mission which all of its parallel
atomic objectives will execute simultaneously with a delay
time δ. Such a notation allows us to modify task duration,
enables more control over timing and task completion.

Consider a mission specification similar to Example 3.2
which requires all of the UAVs to be synchronized at C be-
fore executing the area search together, such a specification
can be written as: Φ = ((θA∗v1

+ θA∗v2
) ‖ θB∗v3

)S(θC∗v1
‖

θC∗v2
‖ θC∗v3

). Here, the operator S enforces that both the
point search tasks at A and B are accomplished completely
before the next tasks are initialized. Then, the area search
tasks at C with all vehicles v1, v2, and v3 are executed
in a synchronous manner. Next, we will present how to
compute a loitering time for each UAV when executing a
synchronized task.

4.2 Synchronized Process Algebra Specification Planning

Definition 4.1. (Vehicle Loitering Action). A vehicle loi-
tering action of vθ is an atomic objective θ such that
Lsθ ≡ Leθ ∧ Ivθ ≡ Fvθ .

Intuitively, a vehicle loitering action is a maneuver added
to the flightpath of a vehicle in order to enable more com-
plex mission specifications that require synchronization.
Here, the starting point where a vehicle has to come to
start a loitering task and the exit point where it should
reach after executing a loitering task must be the same.
Moreover, the vehicle’s state and configuration are not
changed before and after the loitering task execution.

Theorem 4.2. Given a set of eligible vehicles V that can
execute φ1 and φ2, if there exists a feasible plan for φ1
with the vehicle’s state and configuration before and after

executing φ1 given as {Iφ1

V ,F
φ1

V } and for φ2 given as

{Iφ2

V ,F
φ2

V }, where Fφ1

V ≡ I
φ2

V , then there exists a feasible

plan for φ1Sφ2 with respect to {Iφ1

V ,F
φ2

V }.

Proof. The correctness of the above theorem is clear from
the semantics of PA. Let p1, p2 and ps be PA terms
representing φ1, φ2 and loitering behavior defined by an
operator S. Since p1 is feasible, p1 can always evolve to
ps after executing some action α1, i.e., a transition p1 ·
ps

α1−→ ps is valid. Moreover, because p2 is feasible and
executing ps does not change the initial configurations and
states of UAVs for executing p2, so the process ps · p2 can
terminate. As a result, the process p1 · ps · p2 can also
terminate, i.e., φ1Sφ2 is feasible.

Given a mission specification Φ expressed as a sequence
of sub-tasks in which some of them require vehicle-
synchronization and a list of UAVs, the procedure that
computes the loitering time for each UAV before executing
a synchronous task together and returns a feasible plan



Temporal	Service

Mission	Planning	Group 1

Message	Control	

Interface

Temporal	Formula	

Parser

Waypoint	

Adjustment

Temporal	Service

Route	Calculation
Query:	!", !$, … , !&

Waypoint	Lists:	'", '$, … , '&

Temporal	Automation	

Response

Temporal	Automation	

Request

Initialized	Task	

Configuration	

Process	Algebra	String:

Φ = 	!"!$ …!&
'"+ , '′$, … , '′&

ASU	- UT	- VU

Fig. 1. An overview of the Temporal Service

Algorithm 1 Synchronized Process Algebra Planning

Input: a synchronized PA string Φ, a list of UAVs V,
Output: a feasible planning with a completion time Ψ(Φ)

1: procedure Computed a synchronized mission
2: Ψ(Φ)← 0
3: {φ1, φ2, . . . , φn} ← Partition(Φ)
4: for all φi do
5: Ω(ζφi) ← Branch-and-bound(φi)
6: if i < n ∧ φi+1 requires synchronization then
7: Determine a set of eligible UAVs Vφi+1

⊆
V for executing a synchronized task φi+1

8: Compute a loitering times T kφi+1
for each

UAV vk ∈ Vφi+1

9: else
10: T kφi+1

← 0

11: end if
12: Ψ(Φ)← Ψ(Φ) + Ω(ζφi) + max

vk∈Vφi+1

T kφi+1
+ δi+1

13: end for
14: return Ψ(Φ)
15: end procedure

associated with Φ is shown in Algorithm 1, and is further
interpreted as follows.

• First, we partition a PA string φ into a collection
PA sub-strings with respect to synchronization. For
instance, a mission specification Φ in Example 3.2 can
be truncated into two sub-strings φ1 = (θA∗v1

+θA∗v2
) ‖

θB∗v3
and φ2 = θC∗v1

‖ θC∗v2
‖ θC∗v3

.

• For each sub-string φi, we utilize a branch-and-bound
algorithm to calculate the minimum value of the total
completion time for φi. If the next task φi+1 requires
synchronization, we determine the loitering time for
each UAV to wait until all required UAVs are synchro-
nized to execute φi+1. Such computation is based the
distance between the current position and the synchro-
nized location, and the actual speed of each UAV.

• Finally, we return a feasible plan with the completion
time inductively accumulated by the sum of three quan-
tities, the completion time computed by the branch-and-
bound algorithm, the maximum loitering times, and the
given delays.

4.3 Temporal Service

To implement the synchronization functionality, we added
a new service, called Temporal Service, into UxAS to
control the flow of the planning process with respect to

timing specifications. The Temporal Service (TS) includes
two sub-services: the Temporal Formula Parser (TFP)
and the Waypoint Adjustment (WPA). The core service
description of TS is shown in Figure 1, and further
interpreted as follows.

(1) The TS receives a temporal automation request that
includes a list of all tasks and their timing relationships
specified by a temporal formula Φ.

(2) Next, the TFP built inside the TS will truncate Φ into
a collection of sub-formulas φi. Each of them will be
sent to the existing Route Calculation service in UxAS
to retrieve a corresponding waypoint list πi that will be
fed into the WPA later on. Here, πi is determined based
on i) the task completion time of φi computed by the
branch-and-bound algorithm implemented in the RC
service, and ii) the configurations and states of UAVs
that are eligible to execute φi.

(3) Depending on the target where the vehicles should
synchronize before executing a next task, WPA will
first calculate a loitering time required for each vehicle,
and then generate new waypoint lists π′1, π

′
2, ..., π

′
n.

Each waypoint list can be represented as π′i = πi|`i,
where (|) is a list concatenation operator and `i is a
waypoint list that defines a loitering behavior of each
vehicle that should wait.

(4) Finally, the TS will publish a temporal automation
response including synchronized waypoint lists with
respect to the original automation request.

In this paper’s scope, each sub-formula φi represents a PA
term. However, we note that TS was not only designed
to work with PA, but also set the groundwork for future
implementations of temporal specification language such
as LTL, Metric Temporal Logic (MTL), etc.

5. CASE STUDY: FOREST FIRE RESCUE MISSION

In this section, we demonstrate our extensions to UxAS
in specifying and operating the mission specification of a
forest fire scenario involving multiple UAVs 2 . Consider
a forest fire rescue mission shown in Figure 2. There are
four vehicles (V1, V2, V3, and V4) and two water supply
locations (W1 and W2). To stop a fire, the vehicles need to
pump the water at W1 and W2, synchronize at A,B,C,D,
and then simultaneously disperse water in a parallel forma-
tion. The mission specification of this scenario is expressed

2 The proposed extensions as well as the case study presented in this
paper are implemented under the mission planning branch of UxAS:
https://github.com/afrl-rq/OpenUxAS/tree/missionplanning.



Forest Fire Scenario

Mission Planning Group 1

W1

𝑉1

𝑉2

𝑉3

𝑉4

A

B
C

D

• Resources 

• 4 UAVs

• 2 Water Supply Locations

• Requirements: 

• Pump the water at W1 and W2

• Synchronize at A, B, C, and D 

• Simultaneously disperse water in 

a parallel formation

W2

ASU - UT - VU

Fig. 2. Forest Fire Rescue Scenario

Fig. 3. Simulation of a forest fire rescue mission. Left:
without synchronization, Right: with synchronization

as: Φ = (θW1∗V1
‖ θW1∗V2

‖ θW2∗V3
‖ θW2∗V4

)S(θA∗V1
‖

θB∗V2
‖ θC∗V3

‖ θD∗V4
). Figure 3 shows the simulations

of the mission without and with vehicle-synchronization
using AMASE 3 , where UAVs 400, 500, 600, 700 corre-
spondingly represent for V1, V2, V3 and V4. A loitering path
is defined as a hexagon in which the radius is proportional
to a waiting time for a vehicle-synchronization. In case
with the UAV-synchronization, UAV 400 is the first vehicle
that arrives at the synchronized point. As a result, it has
a longest waiting time illustrated via the biggest hexagon.
UAV 500 does not have a loitering behavior as it is the
last vehicle arriving at the synchronized point.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed extensions to UxAS to enable
a mission planning that requires vehicle-synchronization
as well as enforces the order of task completion. We
introduced a notion of SPA to define synchronized mission
specifications and added a new service into UxAS to
control the flow of the planning process with respect to
timing specifications. We demonstrated our extensions to
UxAS through the case study of a forest fire rescue scenario
that requires the synchronization of multiple UAVs.

Future Work. We plan to extend the TS not only to
support vehicle-synchronization using SPA but also to
enable mission planning for multiple vehicles with timing
constraints specified by temporal logic formulae. Consider
the MTL specification “every time a vehicle enters region
R, then within 20 seconds v1 will execute a surveillance
task θ”, written as G[0,100](R =⇒ F[0,20]θR−v1

). Such a
specification can be described in an automation request,
and the TS will correspondingly generate waypoint paths
satisfying the specification. In real missions, a UAV will
3 AMASE is simulation-based framework developed the Aerospace
Vehicles Technology Assessment & Simulation Branch of AFRL.
AMASE can display a mission planning with simulated objects,
waypoints path, communication channels, etc. AMASE is available
at: https://github.com/afrl-rq/OpenAMASE.

not be executing their flight plans within the pre-computed
flight times. Thus, we also plan to enable online updates on
mission goals during plan execution. For example, we can
apply a requirement rewriting technique proposed in Roşu
and Havelund (2005) to generate new plans while ensuring
that the old ones will be satisfied.

REFERENCES

Baeten, J.C. (2004). Applications of process algebra,
volume 17. Cambridge university press.

Bhatia, A., Maly, M.R., Kavraki, L.E., and Vardi, M.Y.
(2011). Motion planning with complex goals. IEEE
Robotics & Automation Magazine, 18(3), 55–64.

Ding, X., Lazar, M., and Belta, C. (2014). Ltl receding
horizon control for finite deterministic systems. Auto-
matica, 50(2), 399–408.

Fainekos, G., Girard, A., Kress-Gazit, H., and Pappas,
G.J. (2009). Temporal logic motion planning for dy-
namic robots. Automatica, 45(2), 343–352.

Fokkink, W. (2013). Introduction to process algebra.
Springer Science & Business Media.

Guo, M. and Dimarogonas, D.V. (2015). Multi-agent
plan reconfiguration under local ltl specifications. The
International Journal of Robotics Research, 34(2), 218–
235.

Kabanza, F. (1995). Synchronizing multiagent plans using
temporal logic specifications. In V. Lesser (ed.), Pro-
ceedings of the First International Conference on Multi–
Agent Systems, 217–224. MIT Press, San Francisco, CA.

Karaman, S. and Frazzoli, E. (2008). Complex mission
optimization for multiple-uavs using linear temporal
logic. In American Control Conference, 2008, 2003–
2009. IEEE.

Karaman, S., Rasmussen, S., Kingston, D., and Frazzoli,
E. (2009). Specification and planning of uav missions:
a process algebra approach. In American Control Con-
ference, 2009. ACC’09., 1442–1447. IEEE.

Kingston, D., Rasmussen, S., and Humphrey, L. (2016).
Automated uav tasks for search and surveillance. In
Control Applications (CCA), 2016 IEEE Conference on,
1–8. IEEE.

Kloetzer, M. and Belta, C. (2007). Temporal logic plan-
ning and control of robotic swarms by hierarchical ab-
stractions. Robotics, IEEE Transactions on, 23(2), 320–
330.

LaValle, S.M. (2006). Planning algorithms. Cambridge
university press.

Rasmussen, S.J. and Kingston, D. (2008). Assignment of
heterogeneous tasks to a set of heterogenous unmanned
aerial vehicles. In AIAA Guidance, Navigation, and
Control Conference and Exhibit, volume 1447.

Rasmussen, S.J. and Shima, T. (2006). Branch and bound
tree search for assigning cooperating uavs to multiple
tasks. In American Control Conference, 2006, 6–pp.
IEEE.

Roşu, G. and Havelund, K. (2005). Rewriting-based
techniques for runtime verification. Automated Software
Engineering, 12(2), 151–197.

Ryan, A., Zennaro, M., Howell, A., Sengupta, R., and
Hedrick, J.K. (2004). An overview of emerging results
in cooperative uav control. In Decision and Control,
2004. CDC. 43rd IEEE Conference on, volume 1, 602–
607. IEEE.

Schnoebelen, P. (2002). The complexity of temporal logic
model checking. Advances in modal logic, 4(393-436),
35.

Shima, T. and Rasmussen, S. (2009). UAV cooperative de-
cision and control: challenges and practical approaches.
SIAM.


