
1

Cyber-Physical Specification Mismatches

LUAN V. NGUYEN, University of Texas at Arlington
KHAZA ANUARUL HOQUE, University of Oxford
STANLEY BAK, Air Force Research Laboratory
STEVEN DRAGER, Air Force Research Laboratory
TAYLOR T. JOHNSON, Vanderbilt University

Embedded systems use increasingly complex software and are evolving into cyber-physical systems (CPS)
with sophisticated interaction and coupling between physical and computational processes. Many CPS operate
in safety-critical environments and have stringent certi�cation, reliability, and correctness requirements.
These systems undergo changes throughout their lifetimes, where either the software or physical hardware is
updated in subsequent design iterations. One source of failure in safety-critical CPS is when there are unstated
assumptions in either the physical or cyber parts of the system, and new components do not match those
assumptions. In this work, we present an automated method towards identifying unstated assumptions in CPS.
Dynamic speci�cations in the form of candidate invariants of both the software and physical components
are identi�ed using dynamic analysis (executing and/or simulating the system implementation or model
thereof). A prototype tool called Hynger (for HYbrid iNvariant GEneratoR) was developed that instruments
Simulink/State�ow (SLSF) model diagrams to generate traces in the input format compatible with the Daikon
invariant inference tool, which has been extensively applied to software systems. Hynger, in conjunction
with Daikon, is able to detect candidate invariants of several CPS case studies. We use the running example
of a DC-to-DC power converter, and demonstrate that Hynger can detect a speci�cation mismatch where a
tolerance assumed by the software is violated due to a plant change. Another case study of an automotive
control system is also introduced to illustrate the power of Hynger and Daikon in automatically identifying
cyber-physical speci�cation mismatches.

CCS Concepts: •Theory of computation →Program speci�cations; •Software and its engineering
→Dynamic analysis;

Additional Key Words and Phrases: Cyber-physical systems, dynamic analysis, speci�cations

ACM Reference format:
Luan V. Nguyen, Khaza Anuarul Hoque, Stanley Bak, Steven Drager, and Taylor T. Johnson. 201X. Cyber-
Physical Speci�cation Mismatches. 1, 1, Article 1 (January 201X), 25 pages.
DOI: 0000001.0000001

Cyber-Physical Speci�cation Mismatches

1 INTRODUCTION
Systems interacting with their physical environments are becoming increasingly dependent upon
computers and software, such as in emerging cyber-physical systems (CPS). For instance, typical
modern cars utilize hundreds of microprocessors, many communications buses, and a complex inter-
connection between sensors, actuators, and processors. In the design and development process for

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 201X ACM. XXXX-XXXX/201X/1-ART1 $15.00
DOI: 0000001.0000001

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:2 L. V. Nguyen et al.

Plant

Ûx = f (x , ũ)

Controller

Ûu = д(x̃ ,u)

SensorActuator

x

x̃u

ũ

Fig. 1. High-level diagram of a closed-loop control system.

most engineered systems, the vast majority of resources are devoted to ensuring systems meet their
speci�cations [7]. However, in spite of signi�cant technical advances for designing veri�cation and
validation such as model checking, Software/Hardware-In-The-Loop (SIL/HIL) testing, automatic
test case generation for software, and sophisticated simulators, there still remain products recalled
across industries for safety concerns due to software problems and system integration between
the cyber and physical subcomponents. The veri�cation community typically focuses on the
developmental veri�cation, where a model of a system is developed and properties (speci�cations)
are (manually, semi-automatically, or automatically) checked for that system. However, many
product recalls and safety disasters induced by software bugs are not a result of design errors, but
are the result of either: (a) implementation errors, or (b) reuse, upgrade, and maintenance errors.
Initiatives like a priori Model-Based Design (MBD) are important research e�orts and may someday
lead to synthesizing provably correct implementations from speci�cations. However, most systems
being designed today still utilize a development process that has engineers writing the software,
and systems are integrated with numerous components in a potentially error-prone process. For
instance, a typical CPS that has been used widely in control systems is a closed-loop feedback
controller shown in Figure 1, where a plant describes physical changes of the environment and a
controller represents cyber/software computations corresponding to these changes. The physical
evolution of the plant can be sensed and sampled by a sensor, and then fed into the controller. Based
on the measurement of the plant provided by the sensor, the controller provides a corresponding
control signal to regulate the physical changes in the plant. This control signal is converted by an
actuator before sending it to the plant. Such a system may contain di�erent possibilities of failure
due to the following main reasons: (a) the controller may make wrong assumptions about the plant,
sensor or actuator. For example, changing parameters of the plant, sensor, or actuator without
updating the controller may produce potential speci�cation mismatches. This controller-reuse
issue can lead to safety failures such as the Honda vehicles recalls or the Ariane 5 �ight 501 disaster
described in Section 2. (b) The plant may be in�uenced by uncontrolled factors (disturbances)
from the environment, (c) the controller is initially encoded based on wrong information about the
physical plant, (d) the sensor and actuator may have conversion errors, and (e) the control con�icts
may arise when using a shared sensor and actuator network.

In this paper, we develop a method to address such challenges that arise in the product evolution
and upgrade process in CPS. Our proposed method enables dynamic analysis using well-established
software engineering tools for large classes of Simulink/State�ow (SLSF) models that are frequently
used in CPS engineering. In particular, the method infers candidate invariants of SLSF models.
Invariants are properties of a system that should always hold, while conditional invariants may
hold at certain program points, for example, at the beginning or end of a function call (pre/post
conditions). This is important because such models are amenable to formal veri�cation using
existing research tools and hybrid system model checkers. Finding invariants can aid this process

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:3

Cyber-

Physical

Models

(Simulink)

Instrument

(Hynger)

Execute/

Simulate

(Simulink)

Infer Candidate

Invariants

(Daikon)

Project Invariants

onto Physical

Variables

(Hynger)

Test Suite

/ Initial

Conditions

No
Check if Candidate

Physical Invariants

match Physical

Specification

Candidate

Cyber-Physical

Specification

Mismatches

Check if Candidate

Invariants are

Actual Invariants

Actual

Invariants

Yes

Fig. 2. Preliminary overview of the proposed methodology using Hynger and Daikon to infer candidate
invariants and detect specification mismatches.

as they represent potential abstractions with a possibly less complex representation than the set of
reachable states. The SLSF block diagrams may be black box components, white box components,
or even system implementations (such as when SLSF is used in SIL/HIL simulation). In the case
when the underlying SLSF models are known, they may be formalized using hybrid automata [31].
Candidate invariants inferred with our Hynger (for HYbrid iNvariant GEneratoR) software tool
in conjunction with Daikon [17, 18] may be formally checked as actual invariants using a hybrid
system model checker [20]. Figure 2 shows a preliminary overview of our proposed methodology.
As a prelude, we just intuitively demonstrate how Hynger and Daikon can be used to detect
speci�cation mismatches. The proposed framework will be fully presented in Section 5.

Contributions. The primary contributions of this paper are: (a) the formalization of the cy-
ber-physical speci�cation mismatch problem, (b) a methodology for performing template-based
automated invariant inference of white box (known) and black box (unknown) CPS models using
dynamic analysis, (c) the Hynger software tool, which supports instrumenting large classes of
SLSF diagrams for dynamic analysis using tools like Daikon, (d) a methodology for checking if
the inferred invariants are actual invariants by using formal models of the underlying SLSF model
diagrams and hybrid systems model checkers such as SpaceEx [20], etc., (e) two proof-of-concept
CPS case studies using Hynger to automatically identify cyber-physical speci�cation mismatches.
These results can be used to help bridging the worlds of actual embedded systems software (e.g.,
detailed SLSF diagrams and generated C code) with hybrid system models.

Overall, this journal has been substantially extended from our previous work [25]. In fact, we
added the formal de�nitions of cyber-physical speci�cation mismatches, cyber-physical input-
output automata, and invariant checking problem to identify whether the inferred invariants are
actual invariants. Moreover, two proof-of-concept CPS case studies including a buck converter and
an abstract fuel control system are presented to show the capability of Hynger tool in automatically
identifying potential cyber-physical speci�cation mismatches of CPSs. The experimental results
illustrate the feasibility of using dynamic invariant inference for analysis of embedded and cyber-
physical systems. Before presenting the details of our approach, we �rst illustrate the pitfalls of
CPS design reuse by citing examples of critical mistakes in existing, certi�ed systems.

2 CYBER-PHYSICAL DESIGN REUSE AND UPGRADE
In this section, we review cases where CPS design reuse and upgrade have led to failures in existing
systems. This motivates the need for our proposed method and our Hynger tool, which can be used
to �nd and formalize unstated assumptions in CPS.

A recent example of a design-reuse problem is the National Highway Transportation and Safety
Administration (NHTSA) recall of 1.5 million Honda vehicles (including one of the author’s) due to
Electronic Control Module (ECM) software problems that could damage the car’s transmission,

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:4 L. V. Nguyen et al.

resulting in possible stalls. The root cause of the safety defect was the result of a physical component
(a bearing in the transmission) being upgraded to an improved design between di�erent model-
year vehicles without appropriate ECM software updates [38]. This problem was widespread
because there was a �ve year delay before the problem was identi�ed, and it was used across model
makes and years (e.g., from 2005 − 2010 model year Accords, 2007 − 2010 CR-Vs, and 2005 − 2008
Elements). This di�culty in root-cause analysis emphasizes the point that such problems are
probably underreported, and the reuse of components in CPS can lead to widespread serious
problems.

Similar design-reuse problems have famously occurred in aviation—the Ariane 5 �ight 501 dis-
aster was a result of reusing Ariane 4’s software without appropriate updates for the increased
thrust of the new rocket [1, 29]. Here, software developers made an assumption about the physical
dynamics of the rocket, but the software was reused from Ariane 4, while Ariane 5 had greater
thrust, so this assumption was invalid. Finally, when considering the future of CPS, the Defense
Advanced Research Projects Agency’s System of Systems Integration Technology and Experimen-
tation (DARPA SoSITE) program [32] describes modularized military aviation systems which are
capable of rapid component swapping and upgrade. Left unaddressed, issues related to unstated
assumptions in components are likely to get worse in future CPS, where changes can occur in the
software and hardware.

Besides design-reuse problems, software upgrades without being thoroughly tested and validated
may result in an epic system failure. One famous example of this type of problem is the disaster
of Mars Climate Orbiter (MCO), developed by NASA’s Jet Propulsion Laboratory (JPL). The root-
cause of this disaster was that di�erent parts of the software developer team were using di�erent
units of measurements. In fact, one part of the ground software upgraded by Lockheed Martin
Astronautics (LMA) measured the thrusters in English units of pounds (force)-seconds instead of
metric units of Newton-seconds as de�ned in its original Software Interface Speci�cation (SIS)
used by JPL [28, 51]. Therefore, the trajectory of the MCO was erroneously calculated by ground
support system computers using the incorrect thruster performance data. This type of software
failure occurred due to the lack of adequate communication between di�erent parts of the software
team and the uncovered issues of veri�cation and validation processes [51].

2.1 Related Work
The idea evaluated in this work, that of inferring physical system speci�cations from embed-
ded software in conjunction with physical system models and evaluating them for mismatches,
was inspired by previous work �nding program speci�cations for pure software systems [46].
Cyber-physical speci�cation mismatch is closely related to model inconsistency [48], architectural
mismatch [21], and requirements consistency [53]. There are many bene�ts of dynamic analysis
such as using implementations instead of models [17, 18, 46] to �nd dynamic program speci�ca-
tions [46], providing documentation over program evolution and checking if speci�cations change
drastically over program evolution, etc. For one, models are not actually required for analysis, and
implementations may be used [17, 18]. The bene�t of executing a system implementation is that
there are no mismatches between a model (potentially documentation-based) and implementation,
since it is not necessary to have a model at all. The candidate speci�cation generated may be
viewed as a form of input-output abstraction of the actual implementation. The limitation includes
results that are unsound without additional reasoning.

Recently, Medhat and his collaborators introduced a new framework for inferring hybrid au-
tomata from black-box implementations of embedded control systems by mining their input/output
traces [33]. In their work, the input/output training traces collected from executing a system are

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:5

clustered and then translated to event sequences. Under several assumptions, hybrid automata
representing the behaviors of the system can be inferred using the input/output correlation. Al-
though the work su�ers some limitations, their proposed approach is a proof-of-concept of using
dynamic analysis to infer the speci�cations of black-box systems. This work is highly relevant
to our proposed method as there is an analogy between inferring hybrid automata and �nding
a candidate invariant for a black-box system. In fact, both of them can be considered as doing
speci�cation inference using dynamic analysis.

There are also several tools such as DepSys [37] and EyePhy [36] that used both static and
dynamic analysis to detect and address the control con�ict due to dependencies when using
multiple CPS applications. Particularly, DepSys is a utility sensing and actuation infrastructure
for a smart home that can simultaneously operate multiple CPS applications. The main novelty of
DepSys is that it provides a comprehensive strategy to specify, detect and automatically address
the control con�icts between sensors and actuators used in a home setting. Similarly, EyePhy is an
integrated system that can detect dependencies and then perform a dependency comprehensive
analysis across HIL CPS medical applications. A built-in simulator, HumMod, in EyePhy is able to
model the complex interactions of the human body using more than 7,800 physiological variables.
HumMod demonstrates the model parameters and the quantitative relationship among them in
XML �les that makes it easier to update the physiological models without the recompilation of the
whole system. EyePhy can be considered as the �rst tool that performs the dependency analysis
across applications’ control actions on the human body. Additionally, the sensor networks with
devices used in smart homes or medical devices can be built using the family of Smart Transducer
Interface Standards (IEEE 1451). IEEE 1451 has been developed in order to provide the common
communication interfaces for connecting transducers (sensors or actuators) to their instrumentation
systems or control networks [27]. The Transducer Electronic Data Sheets (TEDS) embedded in smart
transducers are memory devices, which store the manufacture-related information of the transducer
such as manufacture ID, measurement ranges, serial number, etc. Thus, TEDS allows transducers
to be self-identi�ed and self-descriptive to the device networks. It also provides a standardized
mechanism to facilitate the plug and play of transducers with di�erent control networks. Hence,
IEEE 1451 enables the access of transducer data through a common set of interfaces, allowing users
to select transducers and networks for their applications. This advantage is crucial in facilitating
the device and data interoperability, detecting and resolving con�icts due to dependencies when
concurrently using multiple transducers in the device networks.

Finding speci�cations is a maturing �eld within software engineering [10, 11, 17, 18, 46]. Daikon,
which is used by Hynger, processes program traces to generate invariants [17, 18]. For several
languages (C, C++, etc.), this process is performed without access to the source code by instrument-
ing the compiled program using Valgrind [39]. This makes it di�cult to use on non-x86/x86-64
platforms (although Valgrind is gaining access to other architectures), which is a serious limitation,
as most embedded platforms utilize other architectures (e.g., ARM, AVR, PIC, 8051, MSP430, etc.).
Due in part to these limitations, Hynger instruments architecture-independent SLSF diagrams
directly. In the long run, the Hynger tool is envisioned to take an arbitrary SLSF model, instrument
it, then analyze the resulting traces with dynamic analysis to identify broad classes of cyber-physical
speci�cation mismatches.

The most closely related work using Daikon is to �nd candidate invariants of hybrid models of
biological system [9], and this also illustrates a proof-of-concept of using Daikon as a trace analyzer
for non-purely software systems. Daikon can generate invariants of many forms for variables
and data structures, such as: ranges (a ≤ x ≤ b), linear (y = ax + b), variable ordering (x ≤ y),
sortedness of lists, etc. Daikon works by instrumenting source code and/or compiled binaries with

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:6 L. V. Nguyen et al.

changes that allow for looking at variable values, then Daikon essentially checks if variables satisfy
some template invariants. For instance, if an integer variable x is observed to always be smaller
than some number, say 50, Daikon may generate a candidate invariant of x ≤ 50. Based on many
advantages of using Daikon as a trace analyzer [17, 18], we prefer to use Hynger with Daikon to
infer candidate invariants in our proposed framework. However, we note that Hynger can generate
a trace �le in many input formats that are compatible with other invariant-inference tools using
dynamic analysis not just Daikon. Other research tools like DySy [11] and commercial tools like
Agitagor [10] can be used for generating candidate invariants for other languages.

3 CYBER-PHYSICAL SYSTEMMODELS
The approach presented in this paper applies to the systems with formal models, informal models,
and unknown models/implementations. The primary assumption is that interfaces to the models
or systems are available as SLSF blocks. There are two main categories of blocks appearing in an
SLSF diagram that are supported by our method, white box and black box systems. The white
box systems may contain: (a) known, informal models, (b) known, informal implementations, or
(c) known, formal models (e.g., hybrid automata, or more precisely, classes of SLSF diagrams that
may be converted to hybrid automata [31]). The black box systems may be completely unknown,
and may contain: (a) unknown implementations (e.g., compiled executable binaries with no source
available, such as commercial o�-the-shelf [COTS] components and other third-party systems),
(b) unknown models, and (c) actual cyber-physical systems (e.g., embedded controllers, networked
computers, and physical plants, all that may show up in HIL/SIL simulations interfaced with SLSF).

Next, we de�ne a structure of CPS models used in SLSF. We will not de�ne formal semantics
of this structure or SLSF diagrams in this paper. However, in the case where an SLSF diagram is
a white box and formal semantics may be de�ned, a formal framework like hybrid input/output
automata (HIOA) [30] may be used to specify the semantics, such as done in the HyLink tool [31].
Additionally, if an SLSF diagram is a white box and linear, we may also be able to use SL2SX
Translator for transforming it into a corresponding formal model [34]. Interested readers can �nd
some graphical examples of the translation in [31, 34]. Other formalisms like actors and hierarchical
state machines are commonly used for formal modeling of other diagrammatic frameworks similar
to SLSF [2, 8, 52, 54]. Given a formal model A and candidate speci�cation Σ (e.g., found using
Hynger), we can check if A meets the speci�cation, i.e., A |= Σ by using a hybrid system model
checker like SpaceEx [20]. In some instances, we know when an SLSF diagram corresponds precisely
to a hybrid automaton model [31], and in these cases, we can check if candidate invariants found
with Hynger are actual invariants.

First, we de�ne the hierarchy represented by SLSF diagrams.

De�nition 3.1 (SLSF diagram). An SLSF diagram is a tuple A ∆
= 〈M,E,V〉, where:

• M is a set of blocks (vertices) that represent block diagrams (and sub-blocks/models),
• E ⊆ M ×M is a set of edges between blocks representing a parent-child hierarchy, and
• V is a set of variables, written as V ∆

=
⋃
v ∈M V(v), where V(v) is a set of variables for each

block v ∈ M .

According to De�nition 3.1, the graphG ∆
= (M,E) de�ned by the vertices (blocks)M and edges E is

a rooted tree, where M are block diagrams and E represents a parent-child hierarchical relationship
(e.g., sub-modules and sub-blocks). Here, the root (i.e., top-level) block diagram of the model is
the unique root of the tree, which we denote as root(M). For a block v ∈ M , the children of v are
denoted as children(v) and de�ned as the set of blocks {w ∈ M | w ∈ E(v)}. For a block v ∈ M , the
parent of v is denoted as parent(v) and is de�ned as the singleton set {w ∈ M | v ∈ children(w)}.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:7

Clearly, parent(root(M)) = ∅. For a block v ∈ M , the ancestors of v are denoted as ancestors(v)
and de�ned inductively as the set of blocks {w ∈ M | v ∪ w ∈ children(v) ∪ children(w)} (or
equivalently, as the transitive closure of children(v)).

For a blockv ∈ M , the set of variables ofv is V(v) and is partitioned into sets of input and output
variables, written respectively as VI (v) and VO (v), and we have V(v) = VI (v) ∪ VO (v). A variable
x ∈ V(v) is a name for referring to some state of A, and is associated with a data type denoted
type(x). Typical data types are reals, �oating points, arrays, lists, etc. The valuation of a variable
x ∈ V(v) is the set of all values it may take and is denoted val(x). The state-space ofA is the set of
valuations of all the variables V. An element s of the state-space is called a state, and a trace is a
sequence of states. The SLSF diagram may also have internal (local) variables, although they are
not externally visible, so we do not include them, as only input/output interfaces are visible for
external observation and instrumentation.

Next, we de�ne CPS models that appear in SLSF diagrams.

De�nition 3.2 (CPS model). A CPS model is an SLSF diagram with a set of n typed variables,
V = {x1,x2, . . . ,xn}, which is classi�ed into two subsets as follows.

• VP = {α1,α2, . . . ,αnp } is a set of np ≤ n physical variables such that their values are
continuously updated, and
• VC = {β1, β2, . . . , βnc } is a set of nc cyber variables that are discretely updated, where
n = np + nc .

Here, the set of variables for each block of a CPS model is also partitioned into sets of physical and
cyber variables, V(v) = VP (v) ∪VC (v). In practice, this may be accomplished with subtyping using,
for example, an overloaded type for �oats or �xed points used for approximations of real variables
(e.g., in C, typedef double physical; typedef physical temperature;). The
dynamic changes of the variables of the CPS model may be described using di�erent SLSF blocks
such as S-Function block, look-up table, etc. In case the CPS model is a white-box and simple
enough, we may translate it to a formal framework like HIOA (e.g using Hylink). In fact, we
can specify a set of real-valued variables and their dynamic changes for the converted formal
model based on capturing the output variables from unit delay, integrator, state-space blocks in
the corresponding SLSF diagram [3]. Moreover, we note that the input and output variables are
disjoint, and the cyber and physical variables are disjoint, although these are not all mutually
disjoint. Hence, we further classify the set of variables V(v) into di�erent types as follows.

De�nition 3.3 (Variable Classi�cation). For a block v ∈ M , a variable x ∈ V(v) is considered as:
• an input cyber variable if x ∈ VC (v) and x ∈ VI (v),
• an output cyber variable if x ∈ VC (v) and x ∈ VO (v),
• an input physical variable if x ∈ VP (v) and x ∈ VI (v), or
• an output physical variable if x ∈ VP (v) and x ∈ VO (v).

We extend these notations in De�nition 3.3 naturally to sets of variables if all variables in a set
of variables fall into these classes, and will reference them as such. An arbitrary set of variables
may not be mutually disjoint from each of the input, output, cyber, and physical variables. Thus,
for a set of variables X ⊆ V, we say: (a) X is cyber-physical if there exist both cyber and physical
variables in X , (b) X is input-output if there exist both input and output variables in X , and (c) X
is cyber input-output, physical input-output, cyber-physical input, or cyber-physical output for the
other natural permutations.

Next, using these variable classes, we de�ne classes of SLSF blocks appearing in SLSF diagrams.
For a block v ∈ M , we say: (a) v is a cyber-physical block if there exist both cyber and physical

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:8 L. V. Nguyen et al.

variables in V(v), (b) v is a cyber block if there exist only cyber variables in V(v), and (c) v is a
physical block if there exist only physical variables in V(v).

Cyber-Physical Variable Interactions. Next, we will formalize a notion of in�uence between cyber
and physical models and their variables. For example, consider a typical closed-loop plant-controller
architecture, where outputs of a plant are sensed, used as inputs to a controller, and outputs of the
controller are converted by actuators as inputs to the plant (and potentially disturbances a�ect
everything). Generally, we would say the plant is a physical model, the controller is a cyber model,
and the sensors and actuators are cyber-physical models. However, it is clear that the physical
variables of the plant a�ect the cyber variables of the controller, and vice-versa, albeit not directly,
but through the transitive closure of input-output connections over all blocks in the SLSF diagram.
We note that this is related to the notion of tainted variables in program analysis that is popular
in security [49]. To formalize this notion, we specify interconnections between input and output
variables between blocks v ∈ M at the same hierarchical level in the diagram.

Input-output connections may only exist between models with the same parent (i.e., those in
the same hierarchical structure). For a block v ∈ M , we denote all blocks with the same parent
as siblings(v), which is de�ned as the set {w ∈ M | parent(w) = parent(v)}. Output variables
of a block v ∈ M may be connected to input variables of a block w ∈ M . Let GV

∆
= (VV,EV)

be a directed graph where the vertices VV are variables of blocks v ∈ M and the edges specify
the interconnection between output variables to input variables for some model w ∈ siblings(v),
and we have EV ⊆ V(v) × V(w). In general, for a �xed block v ∈ M and variable x ∈ V(v), this
interconnection relation is a tree, rooted at the output variable x and connected to possibly many
input variables of other blocksw ∈ M forw , v . For two blocks v,w ∈ M , we say v connects tow if
there exists an output variable y ∈ VO (v) and an input variable u ∈ VI (w) with EV(u) = y, denoted
v ↪→ w . For two blocks v,w ∈ M , we say v has a path tow ifw is in the transitive closure of blocks
that v connects to (i.e., v ↪→∗ w), denoted v { w . We note that the{ relation may have cycles,
and such cases arise in feedback control loops. For a block v ∈ M , for an input variable u ∈ VI (v)
and output variable y ∈ VO (v), we say u directly in�uences y if the value of y changes as a function
of u.1 Finally, for two blocks v,w ∈ M such that v { w , for an output variable y ∈ VO (v) and an
input variable u ∈ VI (w), we say y in�uences u if there exists a sequence of directly in�uenced
variables between y and u. Thus, we can see that a cyber variable in one model may in�uence a
physical variable in another model (or even its own model if there is a cycle), and vice-versa. The
software physical variables are all cyber variables that are in�uenced by physical variables, and are
denoted VSP . Typical examples of software physical variables include those used for sensed and
sampled measurements, variables used in feedback control calculations, etc.

Example 3.4. Here, we describe a CPS case study used throughout the remainder of the paper
for illustrating concepts. The case study is a DC-to-DC power converter (like buck, boost, and
buck-boost converters) [40], all of which have similar modeling, but we focus particularly on a buck
converter. The buck converter has two real-valued state variables modeling the inductor current iL
and the capacitor voltage VC . These state variables are written in vector form as: x = [iL ;VC]. The
dynamics of the continuous variables in each modem ∈ {Open,Close,DCM} are speci�ed as linear
(a�ne) di�erential equations: Ûx = Amx + Bmu, where u = VS is a source voltage. The Am matrices
consist of L > 0, R > 0, C > 0 real-valued constants, respectively representing inductance (in
Henries), resistance (in Ohms), and capacitance (in Farads). A buck converter takes an input voltage
of say 5V and “bucks” or drops the voltage to some lower DC voltage, say 2.5V. These circuits

1Internally the blocks may be very sophisticated, could represent complex physical systems, could be Turing complete, etc.,
so we use this abstract notion.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:9

are used in many electronic devices (e.g., personal computers, cellphones, embedded systems,
aircraft, satellites, cars). These circuits are also used as modular components in a variety of novel
power electronics architectures, such as AC/DC microgrids and distributed DC-to-AC multilevel
inverters [42].

The general architecture of the buck converter that we focus on consists of a plant (physical
system) model and a controller (cyber model/software), along with models of actuators and sensors
interfacing the plant and controller. A controller for the buck converter may be constructed as a
hysteresis controller, which changes the mode of the buck converter plant based on the measured
output voltage [22]. In fact, the converter is meant to transform a given source voltage VS to
create an output voltage Vout approximately equal to a desired reference voltage (or set-point)
Vref . To accomplish this, the switch controlling whether VS is connected to the output or not is
toggled depending on whetherVout > Vref orVout < Vref . In practice, to avoid switching too often, a
hysteresis band is used and switches occur when Vout > Vref +Vtol or Vout < Vref −Vtol . The choice
of Vtol , along with the system dynamics, will determine the voltage ripple Vrip about the set-point
Vref . Typical speci�cations require the voltage ripple to be small, so that the output voltage Vout
is approximately Vref , that is, Vrip is chosen so that for Vout = Vref ±Vrip, we have Vout ≈ Vref . The
sensor model performs quantization and sampling, as would occur in typical analog to digital
conversion (ADC) used to digitize analog signal measurements. The actuator models likewise
perform the inverse process of digital to analog conversion (DAC) to convert the digital (cyber)
signals to analog signals.

Generally, we can model the plant as a physical block, the hysteresis controller as a cyber block,
and the sensors and actuators as cyber-physical blocks in SLSF. The plant voltage is an output
physical variable that a�ects the output cyber variable—a switching mode signal that enables the
transition between each mode in the plant—of the controller, and vice-versa. This interaction
between the plant and the controller is accomplished through the transitive closure of input-output
connections with the sensor and the actuator in the SLSF model. We will formalize speci�cations
and mismatches of the buck converter in Section 4. As a prelude, we highlight that Hynger �nds
its candidate invariant (that can be shown to be an actual invariant when modeled as a hybrid
automaton [22, 26, 40]).

3.1 Cyber-Physical Input-Output Automata
To further investigate cyber-physical speci�cation mismatches of CPS models, we consider ones
that may be formally represented as cyber-physical input-output automata.
De�nition 3.5. A cyber-physical input-output automaton (CPIOA) Ã is a tuple, Ã ∆

= 〈Loc, Var ,
Flow, Inv, Traj, Lab, Trans, Init〉, consisting of the following components:

• Loc: a �nite set of discrete locations.
• Var: a �nite set of n continuous, real-valued variables, where ∀x ∈ Var , val(x) ∈ R and
val(x) is a valuation—a function mapping x to a point in its type—here, R; and Q ∆

= Loc×Rn
is the state space. Var is the disjoint of a set of input variables I and a set of output variables
O. Furthermore, C and P classify Var into sets of cyber and physical variables, respectively.
• Inv: a �nite set of invariants for each discrete location, ∀` ∈ Loc, Inv(`) ⊆ Rn .
• Flow: a �nite set of derivatives for each continuous variable x ∈ Var , and Flow(`,x) ⊆ Rn

describes the continuous dynamics of each location ` ∈ Loc. if x is a physical variable,
Flow(`,x) is a non-zero Lipschitz continuous di�erential equation over time. Otherwise, if
x is a cyber variable, Flow(`,x) = 0.
• Traj: a �nite set of continuous trajectory models the valuations of variables over an interval

of real time [0,T]. Let ∆0, ∆t and ∆T be the valuations of variable x at time points 0, t , and

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:10 L. V. Nguyen et al.

T respectively, ∀t ∈ [0,T], ∀x ∈ Var , ∃` ∈ Loc, a trajectory τ ∈ Traj is a mapping function
τ : [0,T] → val(Var) such that:
� ∆t = ∆0 +

∫ t
δ=0 Flow(`,x)dδ , and

� ∆0 |= Inv(`), ∆t |= Inv(`), and ∆T |= Inv(`).
• Lab: a �nite set of synchronization labels.
• Trans: a �nite set of transitions between locations; each transition is a tuple γ ∆

= 〈`, `′,д,u〉,
which can be taken from source location ` to destination location `′ when a guard condition
д is satis�ed, and the post-state is updated by an update map u.
• Init is an initial condition, which consists of a set of locations in Loc and a formula over
Var , so that Init ⊆ Q.

Next, we de�ne the semantics of a CPIOA Ã in term of executions. An execution of Ã is a
sequence of states, written as ρ ∆

= s0 → s1 → s2 → . . ., where s0 ∈ Init, and si → si+1 is the update
from the current-state si to the post-state si+1, that is speci�ed by the transition relations of the
CPIOA Ã including: (a) a discrete transition that demonstrates the instantaneous state update, or
(b) a continuous trajectory that represents the state update over a real time interval. We say a state
sk is reachable from an initial state s0 if there exists an execution ρ

∆
= s0 → s1 → . . .→ sk .

Invariant Property. An invariant property φ of a CPIOA Ã is a formula over Var and Loc that
is always true for every reachable state of Ã. Formally, we say Ã |= φ i� ∀s ∈ Reach(Ã), s |= φ,
where Reach(Ã) denotes the set of reachable states of Ã.

Parallel Composition. Consider two CPIOAs Ã1
∆
= 〈Loc1, Var1, Inv1, Flow1, Traj1, Lab1, Trans1,

Init1〉, and Ã2
∆
= 〈Loc2, Var2, Inv2, Flow2, Traj2, Lab2, Trans2, Init2〉, we consider that Ã1 and Ã2

is compatible if (a) I1 ⊆ O2, (b) I2 ⊆ O1, and (c) O1 ∩ O2 = ∅. The parallel composition operation
combines two compatible CPIOAs into a single CPIOA that represents the synchronous interaction
between these two CPIOA when running simultaneously.

De�nition 3.6 (Parallel Composition). Given two compatible CPIOAs Ã1 and Ã2, the parallel
composition of Ã1 and Ã2 is a CPIOA Ã , written as Ã ∆

= Ã1‖Ã2, where:
• Loc = Loc1 × Loc2,
• Var = Var1 ∪ Var2,
• Q = Q1 × Q2,
• O = O1 ∪ O2,
• I = (I1 ∪ I2) \ O,
• ∀`1, `2 ∈ Loc, Inv(`1, `2) = Inv1(`1) ∧ Inv2(`2)
• ∀`1, `2 ∈ Loc, ∀x ∈ Var , ((`1, `2), val(x) ∈ Init) i� (`1, val(x)) ∈ Init1 ∧ (`2, val(x)) ∈ Init2,
• Lab = Lab1 ∪ Lab2,
• ∀i ∈ {1, 2}, there is a trajectory τ ∈ Traj i� τ ↓ (Loci ∪Vari) ∈ Traji , where τ ↓ (Loci ∪Vari)

denotes the projection of τ onto the sets of variables and locations of component i .
• Given γ1 ∈ Trans1, γ1

∆
=

〈
`1, `

′
1,д1,u1

〉
and γ2 ∈ Trans2, γ2

∆
=

〈
`2, `

′
2,д2,u2

〉
, there exists a

transition γ ∈ Trans, γ ∆
= 〈`, `′,д,u〉 i�:

� ` = (`1, `2), `′ = (`′1, `2), д = д1, and u = u1, or
� ` = (`1, `2), `′ = (`1, `′2), д = д2, and u = u2, or
� ` = (`1, `2), `′ = (`′1, `′2), д = д1 ∧ д2, and u = u1 ∪ u2.

Closed-loop CPIOA. One type of CPS model that we focus on in this paper is a closed-loop model,
e.g., the closed-loop buck converter. Such a model can be formally represented as a closed-loop

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:11

Open[ÛiL
ÛVC

]
=

[
0 − 1

L1
C − 1

RC

] [
iL
VC

]
mode = 1 ∧ iL ≥ 0 ∧VC ≤ Vref +Vtol

Close[ÛiL
ÛVC

]
=

[
0 − 1

L1
C − 1

RC

] [
iL
VC

]
+

[1
L
0

]
VS

mode = 2 ∧ iL ≥ 0 ∧VC ≥ Vref −Vtol

DCM[ÛiL
ÛVC

]
=

[
0 0
0 − 1

RC

] [
iL
VC

]
mode = 1 ∧ iL ≤ 0

θ

θ θ
iL ≤ 0

θstart

Plant

Open
mode = 1 ∧VC ≥ Vref −Vtol

Close
mode = 2 ∧VC ≤ Vref +Vtol

θ
VC ≤ Vref −Vtol

mode := 2

θ
VC ≥ Vref +Vtol

mode := 1

θ
VC > Vref −Vtol

θ
VC < Vref +Vtol

start

Controller
VCmode

Fig. 3. A hybrid automaton models the buck converter plant with hysteresis controller.

CPIOA, which is a parallel composition of a plant and controller CPIOA. The plant CPIOA has
continuous dynamics modeled by ordinary di�erential equations, and the controller CPIOA can be
purely discrete. For instance, the hybrid automaton of the closed-loop buck converter (without
sensor and actuator) shown in Figure 3 can be considered as one closed-loop CPIOA, where θ is a
synchronization label and mode is a discrete control signal. The capacitor voltage variable VC is
not only an output physical variable for the plant CPIOA, but is also an input cyber variable of the
controller CPIOA. In this case, we can check whether the candidate invariants of the closed-loop
buck converter found with Hynger and Daikon are actual invariants by investigating its formal
model (e.g., a closed-loop CPIOA shown in Figure 3) using some hybrid systems model checkers
such as SpaceEx [20].

3.2 Candidate Invariant Checking Problem
The formal de�nition of the candidate invariant checking problem for CPS is described as follows.

De�nition 3.7 (Candidate Invariant Checking). Given a CPS model A with a set of candidate
invariants Φ̂, Ã is a formal model converted from A, a candidate invariant φ̂ ∈ Φ̂ is considered as
an actually invariant property of Ã i� Reach(Ã) |= φ̂.

According to De�nition 3.7, if a CPS model A is a white box system that can be represented in
terms of a formal model such as a CPIOA Ã, a hybrid system model checker may be used to check
whether φ̂ is an invariant property of Ã. If there exists any reachable state of Ã that does not
satisfy φ̂, we can conclude that φ̂ is not an actual invariant of the CPS model A.

4 CYBER-PHYSICAL SPECIFICATIONS AND MISMATCHES
In this section, we will formalize the concept of candidate cyber-physical speci�cation mismatches
of CPS, and introduce a potential method to detect such speci�cation mismatches.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:12 L. V. Nguyen et al.

4.1 Cyber-Physical Specifications
Our goal is to �nd speci�cations that are invariants or conditional invariants, so we do not consider
more general temporal logic formulas. Under this assumption, a speci�cation is equivalent to a
predicate over the state-space of the system. Equivalently, a speci�cation is a multi-sorted �rst-order
logic (FOL) sentence (of a restricted class), so we assume the speci�cation may be represented in the
Satis�ability Modulo Theories (SMT) library standard language [6, 35]. Under these assumptions,
candidate invariants may be speci�ed as quanti�er-free SMT formulas over the variables of the
SLSF model, where the type of a variable corresponds to the SMT sort. For a formula ϕ, let vars(ϕ)
be the set of variables appearing in ϕ. For a formula ϕ: (a) if vars(ϕ) are all physical, then ϕ is a
physical speci�cation, (b) if vars(ϕ) are all cyber, then ϕ is a cyber speci�cation, and (c) if vars(ϕ)
consists of both cyber and physical variables, then ϕ is a cyber-physical speci�cation.

Next, while we will try to infer interesting speci�cations ϕ using dynamic analysis later in the
paper, we �rst highlight examples of speci�cations made a priori in system design, as these are
necessary to de�ne speci�cation mismatches. Let Σ be a set of speci�cations for A, which is a set
of formulas over the variables of A. Referring to Figure 4, we separate the speci�cation Σ into
sets of cyber and physical speci�cations, written respectively as ΣC and ΣP . These speci�cations
include assumptions about the physical environment, such as the value of gravitational force,
temperature bounds, time constants, etc. The physical speci�cation also includes assumptions
about the physical system’s behavior and subcomponents, such as motor torque limits, temperature
bounds of components, sampling rates, velocity limits, etc. Here ΣC denotes the set of cyber
speci�cations. The cyber speci�cations include assumptions about software-physical interfaces,
such as ADC resolution, DAC resolution, sampling rates, etc. It also includes assumptions about the
software system, subcomponents, and software-software interfaces, such as data formats, control
�ow, event orderings, etc. For example, the buck converter has the following physical speci�cations:

σ 1
P

∆
= t ≥ ts ⇒ Vout(t) = Vref (t) ±Vrip,

σ 2
P

∆
= VS (t) = VS (0) ± δS ,

σ 3
P

∆
= Vref (t) = Vref (0) ± δr ef ,

and ΣP
∆
= {σ 1

P ,σ
2
P ,σ

3
P }. Here, σ 1

P states that after some amount of constant startup time ts , the
output of the buck converter Vout(t) remains near a reference (desired) output voltage Vref (t). Both
σ 2
P and σ 3

P specify assumptions about the buck converter’s environment, namely that its source
voltage VS and reference voltage Vref always remain near their initial values. We note that while
time may not typically be thought of as a state of the system, it can be encoded in this way easily,
for example, by including a state variable t with Ût = 1. To evaluate whether A has cyber-physical
speci�cation mismatches, we hypothesize that the cyber speci�cation contains (at least a subset) of
the physical speci�cation. This process is made more explicit in Figure 4 and described next.

4.2 Cyber-Physical Specification Mismatches
A CPS model or implementation will be provided as an SLSF diagram, denoted A as formalized
above. Next, A is instrumented using the Hynger yielding a modi�ed SLSF diagram Â. Now, Â
is executed to generate a set of sampled, �nite-precision traces T for each initial condition θ in a
set of initial conditions Θ, which e�ectively corresponds to a test suite. The traces T are analyzed
using dynamic analysis methods, such as Daikon, to generate a set of candidate invariants Φ̂, each
element φ̂ of which may be checked as actual invariants ifA corresponds to a formal model (e.g., a
CPIOA) or may be converted to one, Ã. If that is the case, then a hybrid system model checker
may be employed to see if φ̂ is an actual invariant φ, and the set of actual invariants Φ is collected.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:13

ऋ෩ ⊨ ො߮?
(Model
Checker)

ऋ: Cyber‐
Physical
Models

(Simulink)

Instrument
(Hynger)

Execute/
Simulate
(Simulink)

 : Infer
Candidate
Invariants
(Daikon)

۾: Project ො߮
onto Physical
Variables
(Hynger)

Cyber‐
Physical

Specification
Mismatches

: Actual
Invariants

દ: Test
Suite /
Initial

Conditions

Yes
߮ ∈ ො߮ ∈

ऋ ऋ

θ ∈ દ

લ

ො߮ ∈ ,
ऋ෩

ො߮ ∈ ۾,
ߪ ∈ ۾ ො߮ ⇒ ?ߪ

(SMT‐
Solver)

No

Fig. 4. Hynger overview, inference of physical specifications assumed by so�ware, and cyber-physical
specification mismatch identification.

De�nition 4.1 (Cyber-Physical Speci�cation Mismatch). Given an SLSF diagram A with a set of
actual physical speci�cations ΣP , let Φ̂P

∆
= Φ̂ ↓ VSP be a set of candidate physical invariant, A has

a cyber-physical speci�cation mismatch i�: ∃σP ∈ ΣP , ∀φ̂P ∈ Φ̂P , σP 6 |= φ̂P .

In De�nition 4.1, Φ̂ ↓ VSP denotes the projection or the restriction of Φ̂ to the set of software
physical variable VSP . In all cases, each candidate invariant φ̂ ∈ Φ̂ is projected (restricted) onto
the software physical variables VSP to yield a candidate physical invariant φ̂P and corresponding
set Φ̂P . Such a projection may be computed using quanti�er elimination methods available in
many modern SMT solvers, such as Z3 [13]2. Now, Φ̂P corresponds to the candidate, inferred
physical invariants from the perspective of the cyber-physical system, each element of which may
be compared to each element σP of a set of actual physical speci�cations ΣP . Since φ̂P and σP
are both formulas, we construct new formulas φ̂P ⇒ σP and σP ⇒ φ̂P , each of which may be
discharged with an SMT solver. If these checks are not valid, then these speci�cations are candidate
cyber-physical mismatches. These checks basically compare whether the inferred speci�cation
and actual speci�cation are more or less restrictive than one another, in terms of the sizes of
corresponding sets of states satisfying the predicates. We hypothesize that it is generally the
case that the inferred physical speci�cation should always be stronger than the actual physical
speci�cation, and only the check φ̂P ⇒ σP would be needed. This would correspond to the case
where the software’s assumptions about the physical world are at least as restrictive as those made
in the actual physical speci�cation. For instance, suppose that the physical speci�cation of the
output voltage of the buck converter is σP

∆
= t ≥ ts ⇒ 4.8V ≤ Vout(t) ≤ 5.2V , and the candidate

physical invariant is φ̂P
∆
= t ≥ ts ⇒ 4.9V ≤ Vout(t) ≤ 5.1V , then the check of the formula φ̂P ⇒ σP

using an SMT solver like Z3 will indicate that the system does not have a speci�cation mismatch.
Otherwise, if the candidate physical invariant is φ̂P

∆
= t ≥ ts ⇒ 4.7V ≤ Vout(t) ≤ 5.0V , then the

check of the formula φ̂P ⇒ σP will indicate that the system has a speci�cation mismatch. On
the other hand, it may also be useful to check φ̂P ⇐ σP , which would correspond to cases where
the inferred physical speci�cation is weaker than the actual physical speci�cation. In this case,
there may be a trace that violates the actual speci�cation, and this may be useful in analysis like
falsi�cation to drive simulations towards a violating behavior.

2Z3 may be downloaded: http://z3.codeplex.com/.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

http://z3.codeplex.com/

1:14 L. V. Nguyen et al.

5 HYNGER: GENERATING INVARIANTS FOR SLSF MODELS
Hynger—HYbrid iNvariant GEneratoR—is a software tool developed for invariant inference of CPS
models represented as SLSF block diagrams3. Hynger is written primarily in Matlab and uses the
Matlab APIs to interact with SLSF diagrams. Hynger also uses some Java code (natively inside
Matlab) to interface with Daikon, which is written in Java. Daikon versions 5.0.0 to 5.1.8 were
tested with Hynger4.

Given an SLSF model A, Hynger automatically inserts callback functions into the model to
print model variables at block inputs and outputs at certain events in the SLSF simulation loop.
Consequently, a trace �le generated by Hynger will then be formatted in the trace input format
required by Daikon. While con�gurable, the default behavior of Hynger is to add instrumentation
(observation) points for every input and output signal for every block (recursively) in the SLSF
diagram. That is, Hynger walks the tree of blocks starting from the root, and for each v ∈ M ,
adds instrumentation points for the input variables VI (v) and the output variables VO (v) of v . Of
course, this may incur a drastic performance overhead, so if this is not desired, the user may select
only a subset of the blocks to instrument and our performance results (see Section 6) illustrate
this distinction. When an SLSF model is simulated with these instrumentation callback functions
added by Hynger, it will generate a trace �le in the input trace format for Daikon. Hynger also
provides the capability to automatically call Daikon from Matlab (by using an appropriate Java call
to Daikon), which will then return the set of candidate invariants from each program point to the
user.

The Hynger �ow is summarized in Figure 4. The inputs are: (a) SLSF diagrams (containing
embedded software code and a set of physical variables along with their physical dynamics models
[e.g., ODEs]), and (b) a set of physical variables along with their dynamics models (speci�ed as
SLSF children diagrams), and (c) a test suite for the embedded software and initial conditions for
the physical simulation (such as noisy initial conditions, θ ∈ Θ). The output of the Hynger tool is a
set of candidate invariants, which, when projected onto all the software physical variables VSP ,
represent a candidate speci�cation the software assumes for the physical parts of the system. Finally,
candidate speci�cations can be checked for conformance with the actual physical requirements
by comparing the two speci�cations: the actual physical speci�cation and the candidate physical
speci�cation from the software perspective.
5.1 Dynamic Invariant Inference with Daikon
Next, we illustrate the dynamic invariant inference methodology used by Daikon on a pure software
example. However, this pure software example (a C function) is actually speci�ed for the controller
in the buck converter case study (shown in Figure 7) in a di�erent manner. The loop in the controller
SLSF model of Figure 9 also computes a sum of an array, and Daikon can �nd this speci�cation for
both the SLSF controller model using Hynger, and the C-frontend for the following example. Note
that, in Figure 9 the digitized output voltage from the buck-converter plant is used to determine
the mode of the switch. Here, Vtol is denoted by the variable Vtol, Vref is Vref. We highlight that
the controller computes a moving average by summing an array. With Hynger and Daikon, we
automatically infer that the result of this is the sum of the samples, similar to the sum return
speci�cation shown in Figure 6 found for the C function in Figure 5.
Example C Program, Formal Speci�cation, and Candidate Invariants Inferred. Figure 5 shows

an example C function to illustrate the use of dynamic analysis with Daikon to �nd candidate

3A preliminary prototype of Hynger with examples is available online: http://verivital.com/hynger/. The repository also
includes Daikon input (*.dtrace) trace �les generated from the examples, as well as the Daikon output candidate invariant
(*.inv) �les.
4Daikon may be downloaded: http://plse.cs.washington.edu/daikon/.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

http://verivital.com/hynger/
http://plse.cs.washington.edu/daikon/

Cyber-Physical Specification Mismatches 1:15

1 / ∗@ r e q u i r e s n >= 0 ; / / a t l e a s t 0 e l em e n t s
@ r e q u i r e s \ v a l i d (b+ (0 . . n − 1)) ; / / a l l e l em e n t s e x i s t

3 @ a s s i g n s \ n o t h i n g ; / / no s i d e e f f e c t s
@ e n s u r e s \ r e s u l t == \ sum (0 , n−1 , \ lambda i n t e g e r j ; b [j]) ;

5 @ en s u r e s \ r e s u l t >= 0 ; / / f a l s e , a r r ay may be n e g a t i v e
∗ /

7 int sum_array(int b[], unsigned int n) {
int i;

9 int s = 0;
/ ∗@ l o o p i n v a r i a n t

11 \ f o r a l l i n t e g e r j ; (0 <= i <= n) ==> s == \ sum (0 , i −1 , \ lambda i n t e g e r j ; b [j]) ; ∗ /
for (i = 0; i < n; i++) {

13 s += b[i];
}

15 return s;
}

Fig. 5. Example C function that sums an array b of n integers. Requirements on the function inputs (i.e.,
preconditions on b and n for the function to be called) are specified as requires assertions in the ACSL
language. Correctness specifications (i.e., postconditions following the function call) are specified as ensures
assertions in the ACSL language.

============== Precondition
2 ..sum_array():::ENTER

b has only one value / / i t ' s a p o i n t e r t o on l y one l o c a t i o n o f memory
4 b[] elements >= 0 / / a l l e l em e n t s were non−n e g a t i v e f o r t h i s s e t o f t r a c e s

n == 100 / / a l l t e s t s were 100 e l emen t a r r a y s f o r t h i s s e t o f t r a c e s
6 size(b[]) == 100 / / a l l t e s t s were 100 e l emen t a r r a y s

============== Postcondition
8 ..sum_array():::EXIT

b[] == orig(b[]) / / no s i d e e f f e c t s
10 return == sum(b[]) / / d o e s r e t u r n t h e sum

sum(b[]) == sum(orig(b[]))
12 b[] elements >= 0

Fig. 6. Daikon candidate invariant output (with some additional markup in C-style comments for readability)
for the sum_array example from Figure 5.
invariants. The function computes and returns the sum of an array of integers. This example was
recreated from an example in the original Daikon paper [17]. Additionally, a formalized correctness
speci�cation is given in the modern ANSI/ISO C Speci�cation Language (ACSL), used by tools
such as Frama-C [12]. Using Daikon and a small suite of unit tests, we were able to successfully
�nd the invariant that returns from the function sum_array, the returned value is the sum of the
elements in the array b. The suite of tests included arrays with: (a) all the same length and same
elements, (b) all the same length and uniformly randomly chosen elements, (c) di�erent lengths and
all the same elements, and (d) di�erent lengths and uniformly randomly chosen elements. Daikon
successfully found the sum postcondition in all these cases with only a few test conditions. The
candidate invariant outputs of Daikon appear in Figure 6, where we can see Daikon has inferred a
candidate invariant that the function returns the sum of an array. We highlight that we �nd the
sum return result of the moving average �lter from Figure 9 using Hynger and Daikon.

6 EXPERIMENTAL RESULTS
Hynger was tested on Windows 10 64-bit using Matlab 2016b, and 2017a, executed on a x86-64
laptop with a 2.3 GHz dual-core Intel i5-6200U processor and 12 GB RAM. All performance metrics
reported were recorded on this system using Matlab 2017a. We tested and evaluated Hynger using a
number of SLSF examples, including: (a) the closed-loop buck converter with sensor and hysteresis
controller described in Section 6.1 and detailed further in [40], (b) a solar array case study that uses a
buck-boost converter [42], (c) benchmarks from S-TaLiRo [4], (d) benchmarks from Breach [14, 24],

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:16 L. V. Nguyen et al.

Model Solver Tmax Sim SimInst Inv Overhead BDAll BDInst BDPct

buck (Section 6.1) ode45 0.0083 6.2985 38.4518 5.7335 7.0152 14 3 21.4286

buck (Section 6.1) ode45 0.0083 6.4567 44.698 7.0913 8.021 14 4 28.5714

buck (Section 6.1) ode45 0.0083 6.5301 78.3176 7.2224 13.0993 14 14 100

heat25830 [4] ode45 50 4.6913 254.5776 14.09 57.2692 28 1 3.5714

heat25830 [4] ode45 50 4.7328 2882.7808 15.6488 612.4233 28 10 35.7143

fuel1 [23] ode15s 15 5.3747 976.6274 7.923 183.182 208 17 8.1731

fuel1 [23] ode15s 15 4.2131 2824.2804 11.604 673.1137 208 63 30.2885

fuel2 [23] ode15s 20 3.3838 36.8312 2.9881 11.7674 25 6 24

fuel2 [23] ode15s 20 2.7353 42.4074 3.2771 16.7018 25 13 52

fuel3 [19] ode15s 20 3.7425 292.9976 4.1131 79.3892 90 11 12.2222

fuel3 [19] ode15s 20 3.6083 945.3992 4.3904 263.2236 90 46 51.1111
Table 1. Hynger performance results for several of the examples evaluated. Solver is the ODE solver used by
SLSF. Tmax is the virtual simulation time in seconds (i.e., time from the perspective of the model). All runtime
results are in seconds and are the mean of 20 runs. Sim is the simulation runtime (s). Inv is the invariant
generation runtime (Daikon) (s). Overhead is the overall relative performance overhead (extra runtime)
(×) using Hynger and Daikon versus only SLSF simulation (i.e., ((SimInst + Inv)/Sim)). BDInst and BDAll
are the numbers of block diagrams instrumented and the overall number of block diagrams, respectively.
BDPct is the percentage (%) of block diagrams instrumented using di�erent Hynger modes of operation (i.e.,
BDInst/BDAll).
(e) benchmarks created as a part of the ARCH 2014 CPSWeek workshop (particularly [23, 40]) and
(f) example models provided by Mathworks. Overall, these examples vary from fairly simple with
tens of blocks (such as the buck converter case study we detail), to complex (with hundreds of
blocks).

Runtime Overhead from Instrumentation with Hynger and Invariant Inference with Daikon. First,
we present an aggregate performance evaluation for some of these examples in Table 1, with
column descriptions appearing in the caption. Overall, the performance overhead of instrumenting
diagrams and performing invariant inference is around an order of magnitude increase in the
best cases, and two-to-three orders of magnitude increase in the worst cases, which we note is
comparable with typical Daikon instrumentation frontends like Valgrind’s overhead [18, 39]. We
conducted performance pro�ling of Hynger and identi�ed the main source of overhead (about 75 to
90 percent) as �le I/O operations. Additionally, as Hynger has several di�erent usage scenarios and
operating modes (where it may be used to instrument few blocks [subsystem and function blocks
by default], many blocks [all blocks except ones such as constants, scopes, etc.], every single block,
or user-selected blocks), the table illustrates these di�erences to give some comparison of how the
methods scale on a given model. Next, we will describe two CPS case studies in details to evaluate
the capability of Hynger in detecting cyber-physical speci�cation mismatches. The �rst model
is the closed-loop buck converter that has been used to illustrate the concepts of this paper, and
the second model is derived from a collection of the automotive powertrain control benchmarks
proposed by Toyota [24].

6.1 Closed-Loop Buck Converter Cyber-Physical Specification Mismatch
A basic cyber-physical speci�cation mismatch is easy to encode in the buck converter, since the
software controller inherently uses a tolerance to encode the desired output voltage ripple. This
hysteresis tolerance band is typically chosen based on the system dynamics and desired output
voltage ripple to ensure the output voltage meets the ripple speci�cation. As a concrete example,

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:17

Vs

T

D

i0

v0

1

𝑧

Vref

Vtol

Vs

T

D

i0

v0

v_out

mode_out

control

mode_in

DC-to-DC Converter Plant

1

𝑧

samples

sample_length

Sensor

V

QuantizerUnit Delay

Controller

Vref

samples

sample_length

mode_in

Vtol
Unit Delay

mode_out

Fig. 7. General CPS case study architecture overview of the buck converter in SLSF. The system is composed
of a plant (physical system) model, a controller (so�ware/cyber), and potentially sensor and actuator models.
The cyber model uses some of the physical model output states to determine a control action or input.
The controller in SLSF appears in Figure 9, and the sensor model appears in Figure 8. An example of this
closed-loop buck converter including only plant and controller can be formally represented as the hybrid
automaton in Figure 3.

the physical speci�cation may contain a �xed constraint that Vout = Vref ±Vrip, e.g., Vref = 5V and
Vrip = 0.1V . The hysteresis band Vtol is then selected based on the system dynamics to ensure
4.9V ≤ Vout ≤ 5.1V so that it meets the requirements of the physical speci�cations de�ned by ΣP
in Section 4.1.

Sources of Cyber-Physical Speci�cation Mismatches of the Closed-Loop Buck Converter. There are
di�erent possibilities of speci�cation mismatch that may occur to the closed-loop buck converter.
We present three scenarios that result in speci�cation mismatches. First, if the plant parameters
change (i.e., di�erent circuit elements are used), and the software is not updated with a new
hysteresis band Vtol to accommodate the changes in the plant dynamics, then a speci�cation
mismatch manifests. This mismatch can be detected using Hynger and the methodology described
in this paper. Of course, this is a somewhat obvious mismatch, as the controller relies on variables
computed as functions of the plant parameters (here, the R, L, and C values, as well as the source
and desired/reference output voltage values). So if these plant components are changed, clearly
the software must be updated. Second, the hysteresis controller is initially constructed using
wrong information about the physical evolution of the plant. In fact, the hysteresis band Vtol is far
di�erent from the actual output voltage ripplesVrip of the plant. Third, the analog sensor of the buck
converter may have ADC conversion errors that reduce the accuracy of the voltage measurement.
These errors can be an o�set error, a full-scale error, di�erential and integral non-linearity errors,
etc. Moreover, a typical error that cannot be avoided in ADC sensor is the quantization error [50].
Overall, these conversion errors may cause a signi�cant impact to result in system failures.

Experimental Results in Identifying Cyber-Physical Speci�cation Mismatches of the Closed-Loop
Buck Converter. We consider the closed-loop buck converter A shown in Figure 7 with VS = 100,
Vref = 48V , Vrip = 5%Vref = 2.4V , and assume that δS , δr ef are equal to zero. The physical

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:18 L. V. Nguyen et al.

Sample

Hold

{samples_length = 16;
Index = 0;}

// restart circular
// buffer
{index = 0;}

[index < samples_length]

{samples[index] = V;}

{index++;}

12

Fig. 8. Stateflow model of sensor with a sample
and hold for the buck converter case study.

Charging
entry: mode_out = 2;

// for loop: compute average of samples
[index < samples_length]

Discharging
entry: mode_out = 1;

Hysteresis
entry: mode_out = mode_in;

2

2

1 3

{index = 0; sum = 0;
v_sample = Vref;}

{v_sample = sum/samples_length;}

[v_sample≤ (Vref – Vtol)]

[v_sample ≥ (Vref + Vtol)]

// default: state same
// (inside hysterestis band)

{sum = sum + samples[index];}

1

Fig. 9. Stateflow model of the buck-converter
voltage hysteresis controller.

speci�cation of the output voltage is σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤ 50.4V . For the initial setup,

with R = 6Ω, L = 2.65mH ,C = 2.2mF , and a sampling frequency fs = 60kHz, the magnitude bound
of the output voltage inferred from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 46.559V ≤ Vout(t) ≤

50.203V . Then, φ̂P is considered as the candidate invariant of the system since the formula φ̂P ⇒ σP
is true. Next, we investigate di�erent possibilities of cyber-physical speci�cation mismatches that
may occur when changing the source voltage, the desired/reference output voltage, the sampling
frequency, and the plant parameters of the buck converter.

First, we increase the source voltage VS from 100V to 120V , the new magnitude bound of
the output voltage inferred from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 46.804V ≤ Vout(t) ≤

51.118V . Then, the formula φ̂P ⇒ σP is false, that indicates the system may have a cyber-physical
speci�cation mismatch.

Second, we drop the desired/reference output voltageVref to 36V . Thus, the physical speci�cation
of the output voltage becomes σ ′P

∆
= t ≥ ts ⇒ 34.2V ≤ Vout(t) ≤ 37.8V . In this case, the inferred

physical speci�cation of the output voltage from Hynger and Daikon becomes φ̂ ′P
∆
= t ≥ ts ⇒

35.068V ≤ Vout(t) ≤ 39.053V , so that the formula φ̂ ′P ⇒ σ ′P is false. Therefore, changing the
reference output voltage may also produce a cyber-physical speci�cation mismatch for the buck
converter.

Third, we decrease the sampling frequency fs from 60kHz to 30kHz. As a result, the new inferred
physical speci�cation of the output voltage from Hynger and Daikon is φ̂P

∆
= t ≥ ts ⇒ 45.853V ≤

Vout(t) ≤ 51.091V . The check of the formula φ̂P ⇒ σP will return false to indicate that the system
may contain a cyber-physical speci�cation mismatch.

Next, we keep the controller unchanged and vary the values of R, L, and C to change the plant
parameters. We then run the buck converter with Hynger in conjunction with Daikon, and collect
candidate physical speci�cations associated with the output voltage. The comparison between
the actual physical speci�cation σP and the physical speci�cation φ̂P inferred from Hynger and
Daikon is shown in Table 2, and also illustrated in Figure 10. Note that in Table 2, φ̂P describes
the magnitude bound of the output voltage when t ≥ ts . The checks of the formula φ̂P ⇒ σP
occasionally return False , that are depicted in Figure 10 when the bound of the inferred output
voltage overlaps its actual bound. This indicates that changing the plant parameters without
updating the controller may produce cyber-physical speci�cation mismatches. That also proves

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:19

Parameter Values φ̂P φ̂P ⇒ σP σP ⇒ φ̂P

R = 4Ω, L = 2.65mH , C = 2.2mF 45.137V ≤ Vout (t) ≤ 49.723V False False

R = 8Ω, L = 2.65mH , C = 2.2mF 46.964V ≤ Vout (t) ≤ 50.405V False False

R = 6Ω, L = 0.65mH , C = 2.2mF 47.141V ≤ Vout (t) ≤ 50.074V True False

R = 6Ω, L = 6.65mH , C = 2.2mF 45.429V ≤ Vout (t) ≤ 50.439V False True

R = 6Ω, L = 2.65mH , C = 1.2mF 45.426V ≤ Vout (t) ≤ 51.109V False True

R = 6Ω, L = 2.65mH , C = 3.2mF 46.859V ≤ Vout (t) ≤ 49.774V True False

Table 2. Experimental data showing the comparison between actual physical specifications and inferred
physical invariants from Hynger and Daikon of the buck converter system. Here, the plant component is
changed due to the changes of R, L, and C values.

the capability of Hynger and our proposed methodology in automatically detecting a candidate
cyber-physical speci�cation mismatch of CPS.

Another possibility of the speci�cation mismatch may occur when the controller is encoded
based on wrong information about the plant. For the buck converter, the hysteresis controller is
built with an assumption that the output voltage ripple Vrip is equal to 5% of the reference voltage
Vref . However, the actual value of Vrip may be much smaller than this assumption percentage. The
percentage of the output voltage ripple of the buck converter is calculated as follows [16],

Vrip

Vref
=

1 − D
8LC f 2s

, (1)

where D =
Vref
ηVS is a duty cycle, and η is an e�ciency coe�cient of the converter. Here, with

L = 2.65mH , C = 2.2mF , fs = 60kHz, η = 0.79, Vref = 48V , andVS = 100V , the percentage of the
output voltage ripple is approximately equal to 0.0002%. Thus, the hypothesized output voltage
ripple used to build the controller is far larger than the actual output voltage ripple calculated
by Equation 1. It de�nitely shows that the system may have speci�cation mismatches since the
controller is encoded depending on wrong information about the physical plant.

Furthermore, changing the length of voltage measurement array (samples_length) in the sensor
of the buck converter (shown in Figure 8) may also cause a speci�cation mismatch. For example, if
we increase it from 16 to 32, the inferred physical speci�cation using Hynger and Daikon becomes
φ̂P

∆
= t ≥ ts ⇒ 46.095V ≤ Vout(t) ≤ 50.788V , which no longer implies the actual physical

speci�cation of the output voltage σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤ 50.4V .

6.2 Abstract Fuel Control System Benchmarks
In the second case study, we present the potential cyber-physical speci�cation mismatches of the
abstract fuel control (AFC) system benchmarks provided by Toyota [23, 24], and further studied
in [19]. The goal of these benchmarks is to determine the fuel rate that should be injected into
the manifold to maintain the air-fuel ratio within a desirable range using the feedforward and
Proportional-Integral (PI) controllers. Particularly, we focus on the third model of the benchmarks
including a sequence of Simulink blocks and State�ow chart that increase levels of sophistication
and �delity of the system [19]. The model consists of four operation modes and four continuous
variables. The modes include startup, normal, power, and failure; and the variables are (a) p: an
intake manifold pressure, (b) pe : an intake manifold pressure estimate, (c) λ: an air-fuel ratio, and
(d) i: an integrator state, PI control signal. The evolution of the continuous variables in each mode

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:20 L. V. Nguyen et al.

0 0.005 0.01 0.015
46.5

47

47.5

48

48.5

49

49.5

50

50.5

t (s)

ϕ̂1

P ϕ̂2
P ϕ̂3

P ϕ̂4
P ϕ̂5

P ϕ̂6
P

<P

0 0.005 0.01 0.015
Time (s)

45

46

47

48

49

50

51

52

V
ou

t
(V

)

Fig. 10. A plot represents simulation traces and magnitude bounds ofVout of the buck converter with di�erent
values of R, L, andC . Here, σP denotes the actual bound ofVout , and φ̂kP , k ∈ [1, 6] denotes the inferred bound
of Vout listed orderly in Table 2.

is governed by nonlinear polynomial di�erential equations as follows,

Ûp = c1(2θ (c20p2 + c21p + c22) − Ûmc) (2)
Ûpe = c1(2c23θ (c20p2 + c21p + c22) − (c2 + c3ωpe + c4ωp2e + c5ω2pe)) (3)
Ûλ = c26(c15 + (c16c25Fc + c17c225F 2c + c18 Ûmc + c19 Ûmcc25Fc − λ) (4)
Ûi = c14(c24λ − c11), (5)

where Fc = 1
c11
(1+ i +c13(c24λ−c11))(c2+c3ωpe +c4ωp2e +c5ω2pe), and Ûmc = c12(c2+c3ωp+c4ωp2+

c5ω
2p). θ and ω are throttle angle (in degrees) and engine speed inputs (in rpm), respectively. The

values of all constant parameters c j , j ∈ [1, 25], θ and ω are speci�ed in [24]. We note that this
system can be formally represented as a closed-loop CPIOA, which is the parallel composition of
a plant and controller model, and both of them have three exogenous inputs including θ , ω, and
sensor failure event fail_event [19].

AFC Plant Model. The plant can be modeled as a CPIOA with a single mode and two output
physical variables p, λ whose continuous evolutions over time are described in Equation 2 and
Equation 4, respectively. This model has an input cyber variable Fc , that is a fuel command.

AFC Controller Model. The controller model is a CPIOA with four operation modes including
startup, normal, power, and failure. The controller has two output physical variables pe , and i whose
continuous evolutions over time are described in Equation 3 and Equation 5, respectively. Here, p
and λ are considered as two input cyber variables of the controller.

Reachability analysis of a sophisticated system like the AFC system is a major contribution to
both industrial and research community. However, it is a challenge to design and verify such a
system using existing hybrid system veri�cation tools. Instead, we can attempt to verify some
safety requirements of the system. The AFC system has several actual physical speci�cations that

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:21

can be found in [15]. In this section, we select two main physical speci�cations to evaluate the
capability of Hynger and the proposed methodology. The �rst physical speci�cation requires the
undershoot and overshoot of the air-fuel ratio of the system should be in the settling region of ±2%
of its reference value λref . The second physical speci�cation requires the air-fuel ratio should be
maintained within ±2% of λref in the normal mode when t ≥ ts . These properties can be formally
expressed as:

σ 1
P

∆
= mode = startup ∧ t ≤ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref (6)

σ 2
P

∆
= mode = normal ∧ t ≥ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref . (7)

Initially, we set λref = 14.7, θ ∈ [8.8◦, 90◦], w = 1800rpm ts = 9.5s , and the maximum simulation
time Tmax = 20s , the proportional and integral gains of the PI controller are c13 = 0.04 and
c14 = 0.14, respectively. Next, we investigate di�erent possibilities of cyber-physical speci�cation
mismatches for each physical speci�cation. For the �rst physical speci�cation σ 1

P , the AFC system
may have speci�cation mismatches when changing the engine speed and throttle inputs. For the
second physical speci�cation σ 2

P , the system may contain speci�cation mismatches when changing
controller and plant parameters.

Cyber-physical speci�cation mismatches according to σ 1
P . With the initial setup mentioned earlier,

the physical speci�cation in Equation 6 becomes σP
∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.406 ≤

λ(t) ≤ 14.994. Here, the magnitude bound of the air-fuel ratio at the startup mode of the system
inferred from Hynger and Daikon is φ̂1P

∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.505 ≤ λ(t) ≤ 14.97.

Thus, the check of the formula φ̂1P ⇒ σ 1
P is valid, that indicates φ̂1P is a candidate invariant of the

AFC system. Next, we vary the input values and observe the consequent behaviors of the system.
First, we vary the value of the engine speed and keep other parameters unchanged. Assuming

w = 2200rpm, the inferred physical speci�cation of the air-fuel ratio from Hynger and Daikon
becomes φ̂1P

∆
= mode = startup ∧ t ≤ 9.5 ⇒ 14.129 ≤ Vout(t) ≤ 15.033. Hence, the formula

φ̂1P ⇒ σ 1
P is false indicating that the AFC system may contain a cyber-physical speci�cation

mismatch as we change the engine speed input.
Second, we change the range of the throttle input to [40◦, 70◦]. Then, the inferred physical

speci�cation of the air-fuel ratio from Hynger and Daikon becomes φ̂1P
∆
= mode = startup ∧ t ≤

9.5 ⇒ 14.396 ≤ Vout(t) ≤ 14.849. Hence, φ̂1P no longer implies σ 1
P . Therefore, there exists a

cyber-physical speci�cation mismatch when changing the throttle input as well.

Cyber-physical speci�cation mismatches according to σ 2
P . Initially, the physical speci�cation in

Equation 7 is σ 2
P

∆
= mode = normal ∧ t ≥ 9.5 ⇒ 14.406 ≤ λ(t) ≤ 14.994. Here, the magnitude

bound of the air-fuel ratio at the normal mode of the system inferred from Hynger and Daikon is
φ̂2P

∆
= mode = normal ∧ t ≥ 9.5⇒ 14.645 ≤ λ(t) ≤ 14.84. Then, we can consider φ̂2P as a candidate

invariant of the system because the formula φ̂P ⇒ σP is true.
Next, we investigate whether there is a speci�cation mismatch for the AFC system as we change

the proportional and integral gains of its PI controller. Table 3 describes the comparison between the
actual physical speci�cation σ 2

P and the physical speci�cation φ̂2P inferred from Hynger and Daikon,
where φ̂2P ↓ λ denotes the inferred bound for λ when t ≥ ts andmode = normal . In Table 3, the check
of the formula φ̂2P ⇒ σ 2

P returns false in some cases (e.g., when c13 = 0.04, c14 = 0.04) indicating
that the changes in the controller gains may produce cyber-physical speci�cation mismatches for
the AFC system.

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

1:22 L. V. Nguyen et al.

Controller Gain φ̂2P ↓ λ φ̂2P ⇒ σ 2P σ 2P ⇒ φ̂2P

c13 = 0.01, c14 = 0.14 14.567 ≤ λ(t) ≤ 15.058 False False

c13 = 0.02, c14 = 0.14 14.592 ≤ λ(t) ≤ 15.033 False False

c13 = 0.06, c14 = 0.14 14.634 ≤ λ(t) ≤ 14.955 True False

c13 = 0.8, c14 = 0.14 14.642 ≤ λ(t) ≤ 14.929 True False

c13 = 0.04, c14 = 0.04 14.649 ≤ λ(t) ≤ 15.007 False False

c13 = 0.04, c14 = 0.34 14.581 ≤ λ(t) ≤ 14.937 True False

c13 = 0.04, c14 = 0.64 14.577 ≤ λ(t) ≤ 14.888 True False

c13 = 0.04, c14 = 0.94 14.589 ≤ λ(t) ≤ 14.855 True False

Table 3. Experiment results illustrate the comparison between actual physical specifications and inferred
physical invariants from Hynger and Daikon of the AFC system when changing the proportional gain and
the integral gain of its PI controller.

7 DISCUSSION
Identifying a cyber-physical speci�cation mismatch of CPS with dynamic analysis is a challenging
problem. Although the Hynger prototype in conjunction with Daikon can detect potential cyber-
physical speci�cation mismatches of CPS, such as those in the case studies described in Section 6,
however, it has some limitations. First, the Daikon tool used by Hynger may only infer extremely
limited classes of nonlinear invariants by default (e.g., squares like x2), and not general polynomials
(e.g., x2+y2+z3). So we plan to extend the invariant templates to be able to capture more interesting
relations, particularly for physical variables. Second, although Daikon can infer candidate invariants
in terms of logical predicates over variables, it has limitation for checking complex speci�cations
related to real-time requirements such as STL, MTL and HyperSTL [41]. Industrial-scale CPS
usually have safety and liveness requirements depending on precise real-time relations of signals,
so strengthening the capability of checking temporal logic like STL, MTL and HyperSTL in Daikon
would leverage the methodology presented in this paper.

Additionally, while the Hynger tool is a prototype, it can be envisioned to take an arbitrary SLSF
model, instrument it, feed the resulting traces to Daikon to generate candidate invariants, then
check if these candidate invariants are actual invariants or not (using, e.g., SpaceEx [20] or other
hybrid system model checkers), as well as identify speci�cation mismatches. For example, the
candidate invariants inferred from Hynger and Daikon of the buck converter including only plant
and controller represented in term of hybrid automata in Figure 3 would easily be checked to see
whether they are actually invariants using SpaceEx. In long term, Hynger could be extended for
runtime assurance tasks like detecting and thwarting security violations and attacks, similar to the
ClearView tool that also uses Daikon [47]. ClearView’s success for software systems illustrates that
�nding sets of candidate invariants and monitoring their evolution over time may be useful for
runtime assurance and resiliency methods in CPS. If the candidate invariants are checked at runtime
using a real-time reachability method [5], a formal and dynamic runtime assurance environment
may be feasible.

8 CONCLUSION & FUTUREWORKS
The results illustrate the feasibility of using dynamic invariant inference for analysis of embedded
and cyber-physical systems. The Hynger prototype enables a powerful extension of dynamic
invariant inference to CPS for two main reasons. First, it enables potentially model-free and black
box invariant inference, since the internals of the SLSF blocks may remain unknown. If no model

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

Cyber-Physical Specification Mismatches 1:23

is available (in the black box case), the candidate invariants represent what may be the most formal
model available, otherwise (in the white box case), then candidate invariants represent a candidate
abstraction of that model. If the candidate invariants are actual invariants, this is powerful, as they
represent what is likely a less complex representation of the set of reachable states of the system.
Second, if we view the SLSF models as hybrid automata in a formal context, it represents the �rst
use of dynamic execution analysis for hybrid systems with sophisticated software state and discrete
complexity. Two proof-of-concept CPS case studies including the DC-to-DC power converter and
the powertrain fuel control system are presented to illustrate the capability of Hynger in detecting
potential cyber-physical speci�cation mismatches.

Overall, there are several directions for future research, including: (a) extending the classes of
invariants that may be inferred, particularly to nonlinear (polynomial) [43] and disjunctive/max-plus
forms [45], potentially by integrating Daikon with techniques from Dig [44], (b) runtime assurance
and veri�cation with real-time reachability of inferred invariants [5], (c) improving and re�ning
Hynger, particularly with regard to performance (such as using Daikon in the online mode with
direct pipes between Hynger and Daikon, so that �le I/O is minimized), and (d) analyzing more
industrial-scale CPS using Hynger.

ACKNOWLEDGMENTS
The material presented in this paper is based upon work supported by the National Science
Foundation (NSF) under grant numbers CNS 1464311, EPCN 1509804, and SHF 1527398, the Air
Force Research Laboratory (AFRL) through contract numbers FA8750-15-1-0105, and FA8650-12-3-
7255 via subcontract number WBSC 7255 SOI VU 0001, and the Air Force O�ce of Scienti�c Research
(AFOSR) under contract numbers FA9550-15-1-0258 and FA9550-16-1-0246. The U.S. government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. Any opinions, �ndings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily re�ect the views of
AFRL, AFOSR, or NSF.

REFERENCES
[1] 1996. ARIANE 5 Flight 501 Failure, Report by the Inquiry Board. Technical Report. ESA Inquiry Board, Paris, France.

https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
[2] R. Alur, Thao Dang, J. Esposito, Yerang Hur, F. Ivancic, V. Kumar, P. Mishra, G.J. Pappas, and O. Sokolsky. 2003.

Hierarchical modeling and analysis of embedded systems. Proc. IEEE 91, 1 (Jan. 2003), 11–28. DOI:http://dx.doi.org/
10.1109/JPROC.2002.805817

[3] Rajeev Alur, Aditya Kanade, S Ramesh, and KC Shashidhar. 2008. Symbolic analysis for improving simulation coverage
of Simulink/State�ow models. In Proceedings of the 8th ACM international conference on Embedded software. ACM,
89–98.

[4] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. 2011. S-taliro: A tool for temporal
logic falsi�cation for hybrid systems. In Tools and Algorithms for the Construction and Analysis of Systems. Springer.

[5] Stanley Bak, Taylor T. Johnson, Marco Caccamo, and Lui Sha. 2014. Real-Time Reachability for Veri�ed Simplex
Design. In IEEE Real-Time Systems Symposium (RTSS). IEEE Computer Society, Rome, Italy.

[6] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. (2010). http://smt-lib.org/
[7] Boris Beizer. 1990. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY, USA.
[8] Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, and Rongjie Yan. 2014. Component-

based veri�cation using incremental design and invariants. Software & Systems Modeling (2014), 1–25. DOI:http:
//dx.doi.org/10.1007/s10270-014-0410-8

[9] Francesco Bernardini, Marian Gheorghe, Francisco Jose Romero-Campero, and Neil Walkinshaw. 2007. A Hybrid
Approach to Modeling Biological Systems. In Membrane Computing, George Eleftherakis, Petros Kefalas, Gheorghe
Paun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). LNCS, Vol. 4860. Springer Berlin Heidelberg, 138–159. DOI:
http://dx.doi.org/10.1007/978-3-540-77312-2_9

[10] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. 2006. From Daikon to Agitator: Lessons and challenges in
building a commercial tool for developer testing. In Proceedings of the 2006 international symposium on Software testing
and analysis (ISSTA ’06). ACM, New York, NY, USA, 169–180. DOI:http://dx.doi.org/10.1145/1146238.1146258

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://dx.doi.org/10.1109/JPROC.2002.805817
http://dx.doi.org/10.1109/JPROC.2002.805817
http://smt-lib.org/
http://dx.doi.org/10.1007/s10270-014-0410-8
http://dx.doi.org/10.1007/s10270-014-0410-8
http://dx.doi.org/10.1007/978-3-540-77312-2_9
http://dx.doi.org/10.1145/1146238.1146258

1:24 L. V. Nguyen et al.

[11] C. Csallner, N. Tillmann, and Y. Smaragdakis. 2008. DySy: Dynamic symbolic execution for invariant inference. In
Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th International Conference on. 281–290. DOI:http://dx.doi.org/10.
1145/1368088.1368127

[12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012.
Frama-C: A Software Analysis Perspective. In Software Engineering and Formal Methods, George Eleftherakis, Mike
Hinchey, and Mike Holcombe (Eds.). LNCS, Vol. 7504. Springer Berlin Heidelberg, 233–247. DOI:http://dx.doi.org/10.
1007/978-3-642-33826-7_16

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In Proc. of 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08/ETAPS ’08). Springer-Verlag, 337–340.

[14] Alexandre Donzé. 2010. Breach, A Toolbox for Veri�cation and Parameter Synthesis of Hybrid Systems. In Computer
Aided Veri�cation, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Lecture Notes in Computer Science, Vol. 6174.
Springer Berlin / Heidelberg, 167–170. DOI:http://dx.doi.org/10.1007/978-3-642-14295-6_17

[15] Parasara Sridhar Duggirala, Chuchu Fan, Sayan Mitra, and Mahesh Viswanathan. 2015. Meeting a Powertrain
Veri�cation Challenge. In To appear in the Proceedings of International Conference on Computer Aided Veri�cation (CAV
2015).

[16] Robert W. Erickson and Dragan Maksimović. 2004. Fundamentals of Power Electronics (2nd edition ed.). Springer.
DOI:http://dx.doi.org/10.1007/b100747

[17] M.D. Ernst, J. Cockrell, William G. Griswold, and D. Notkin. 2001. Dynamically discovering likely program invariants
to support program evolution. Software Engineering, IEEE Transactions on 27, 2 (2001), 99–123. DOI:http://dx.doi.org/
10.1109/32.908957

[18] Michael D. Ernst, Je� H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen
Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Science of Computer Programming 69, 1–3
(Dec. 2007), 35–45.

[19] Chuchu Fan, Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. 2015. Progress on Powertrain
Veri�cation Challenge with C2E2. In ARCH ’15: Proc. of the 2nd Workshop on Applied Veri�cation for Continuous and
Hybrid Systems.

[20] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,
Antoine Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Veri�cation of Hybrid Systems. In Computer
Aided Veri�cation (CAV) (LNCS). Springer.

[21] D. Garlan, R. Allen, and J. Ockerbloom. 1995. Architectural Mismatch or Why it’s hard to build systems out of existing
parts. In Software Engineering, 1995. ICSE 1995. 17th International Conference on. 179–179.

[22] Shamina Hossain, Sairaj Dhople, and Taylor T. Johnson. 2013. Reachability analysis of closed-loop switching power
converters. In Power and Energy Conference at Illinois (PECI). 130–134. DOI:http://dx.doi.org/10.1109/PECI.2013.
6506047

[23] Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. 2014. Benchmarks for Model
Transformations and Conformance Checking. In 1st International Workshop on Applied Veri�cation for Continuous and
Hybrid Systems (ARCH).

[24] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, and Sanjit A. Seshia. 2013. Mining requirements from
closed-loop control models. In Proceedings of the 16th international conference on Hybrid systems: computation and
control (HSCC ’13). ACM, New York, NY, USA, 43–52. DOI:http://dx.doi.org/10.1145/2461328.2461337

[25] Taylor T Johnson, Stanley Bak, and Steven Drager. 2015. Cyber-physical speci�cation mismatch identi�cation with
dynamic analysis. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. ACM,
208–217.

[26] Taylor T. Johnson, Zhihao Hong, and A. Kapoor. 2012. Design veri�cation methods for switching power converters. In
Power and Energy Conference at Illinois (PECI), 2012 IEEE. 1–6. DOI:http://dx.doi.org/10.1109/PECI.2012.6184587

[27] Kang Lee. 2000. IEEE 1451: A standard in support of smart transducer networking. In Instrumentation and Measurement
Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, Vol. 2. IEEE, 525–528.

[28] Nancy G Leveson. 2002. System safety engineering: Back to the future. Massachusetts Institute of Technology (2002).
[29] J. L. Lions. 1996. Ariane 5 Flight 501 Failure. Technical Report. Paris, France. http://www.di.unito.it/~damiani/

ariane5rep.html
[30] Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2003. Hybrid I/O automata. Information and Computation 185, 1

(2003), 105–157. DOI:http://dx.doi.org/10.1016/S0890-5401(03)00067-1
[31] Karthik Manamcheri, Sayan Mitra, Stanley Bak, and Marco Caccamo. 2011. A step towards veri�cation and synthesis

from Simulink/State�ow models. In Proc. of the 14th Intl. Conf. on Hybrid Systems: Computation and Control (HSCC).
ACM, 317–318. DOI:http://dx.doi.org/10.1145/1967701.1967749

[32] Kevin McCaney. 2014. Pentagon’s rapid plan for maintaining air superiority. http://defensesystems.com/Articles/
2014/05/01/DARPA-system-of-systems-SoSITE.aspx. (2014).

[33] Ramy Medhat, S. Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2015. A Framework for Mining Hybrid
Automata from Input/Output Traces. In Proceedings of the 12th International Conference on Embedded Software (EMSOFT

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

http://dx.doi.org/10.1145/1368088.1368127
http://dx.doi.org/10.1145/1368088.1368127
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/b100747
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1109/PECI.2013.6506047
http://dx.doi.org/10.1109/PECI.2013.6506047
http://dx.doi.org/10.1145/2461328.2461337
http://dx.doi.org/10.1109/PECI.2012.6184587
http://www.di.unito.it/~damiani/ariane5rep.html
http://www.di.unito.it/~damiani/ariane5rep.html
http://dx.doi.org/10.1016/S0890-5401(03)00067-1
http://dx.doi.org/10.1145/1967701.1967749
http://defensesystems.com/Articles/2014/05/01/DARPA-system-of-systems-SoSITE.aspx
http://defensesystems.com/Articles/2014/05/01/DARPA-system-of-systems-SoSITE.aspx

Cyber-Physical Specification Mismatches 1:25

’15). IEEE Press, Piscataway, NJ, USA, 177–186. http://dl.acm.org/citation.cfm?id=2830865.2830885
[34] Stefano Minopoli and Goran Frehse. 2016. SL2SX translator: from Simulink to SpaceEx models. In Proceedings of the

19th International Conference on Hybrid Systems: Computation and Control. ACM, 93–98.
[35] Leonardo Moura and Nikolaj Bjørner. 2009. Satis�ability Modulo Theories: An Appetizer. In Formal Methods:

Foundations and Applications, Marcel Medeiros Oliveira and Jim Woodcock (Eds.). LNCS, Vol. 5902. Springer Berlin
Heidelberg, 23–36. DOI:http://dx.doi.org/10.1007/978-3-642-10452-7_3

[36] Sirajum Munir, Mohsin Y Ahmed, and John A Stankovic. 2015. EyePhy: Detecting Dependencies in Cyber-Physical
System Apps due to Human-in-the-Loop. (2015).

[37] Sirajum Munir, John Stankovic, and others. 2014. DepSys: Dependency aware integration of cyber-physical systems
for smart homes. In Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE, 127–138.

[38] National Highway Tra�c Safety Administration (NHTSA). 2011. Honda Automatic Transmission Control Module
Software (Recall #11V395000). (Aug. 2011).

[39] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumenta-
tion. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, New York, NY, USA, 89–100. DOI:http://dx.doi.org/10.1145/1250734.1250746

[40] Luan Viet Nguyen and Taylor T. Johnson. 2014. Benchmark: DC-to-DC Switched-Mode Power Converters (Buck
Converters, Boost Converters, and Buck-Boost Converters). In Applied Veri�cation for Continuous and Hybrid Systems
Workshop (ARCH 2014). Berlin, Germany.

[41] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy Deshmukh, and Taylor T. Johnson. 2017. Hyperproperties
of real-valued signals. In 15th ACM-IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE 2017). IEEE.

[42] Luan Viet Nguyen, Hoang-Dung Tran, and T.T. Johnson. 2014. Virtual Prototyping for Distributed Control of a
Fault-Tolerant Modular Multilevel Inverter for Photovoltaics. Energy Conversion, IEEE Transactions on 29, 4 (Dec. 2014),
841–850. DOI:http://dx.doi.org/10.1109/TEC.2014.2362716

[43] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using Dynamic Analysis to Discover
Polynomial and Array Invariants. In Proceedings of the 34th International Conference on Software Engineering (ICSE ’12).
IEEE Press, Piscataway, NJ, USA, 683–693.

[44] T Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A Dynamic Invariant Generator for
Polynomial and Array Invariants. ACM Transactions on Software Engineering and Methodology, to appear (2014).

[45] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. Using Dynamic Analysis to Generate
Disjunctive Invariants. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 608–619. DOI:http://dx.doi.org/10.1145/2568225.2568275

[46] Jeremy W. Nimmer and Michael D. Ernst. 2002. Automatic generation of program speci�cations. In Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and analysis (ISSTA ’02). ACM, New York, NY, USA,
229–239. DOI:http://dx.doi.org/10.1145/566172.566213

[47] Je� H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,
Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
2009. Automatically Patching Errors in Deployed Software. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 87–102. DOI:http://dx.doi.org/10.1145/1629575.
1629585

[48] A Reder and A Egyed. 2013. Determining the Cause of a Design Model Inconsistency. Software Engineering, IEEE
Transactions on 39, 11 (Nov. 2013), 1531–1548. DOI:http://dx.doi.org/10.1109/TSE.2013.30

[49] E.J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to Ask). In Security and Privacy (SP), 2010 IEEE Symposium
on. 317–331. DOI:http://dx.doi.org/10.1109/SP.2010.26

[50] Len Staller. 2005. Understanding analog to digital converter speci�cations. Embedded Systems Design (2005).
[51] Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter Norvig, LS LaPiana, PJ Rutledge, D

Folta, and R Sackheim. 1999. Mars climate orbiter mishap investigation board Phase I report, 44 pp. NASA, Washington,
DC (1999).

[52] Stavros Tripakis, Christos Stergiou, Chris Shaver, and Edward A. Lee. 2013. A modular formal semantics for Ptolemy.
Mathematical Structures in Computer Science 23 (8 2013), 834–881. Issue Special Issue 04. DOI:http://dx.doi.org/10.
1017/S0960129512000278

[53] M.W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M.P.E. Heimdahl, and S. Rayadurgam. 2013. Your What Is My How:
Iteration and Hierarchy in System Design. Software, IEEE 30, 2 (March 2013), 54–60. DOI:http://dx.doi.org/10.1109/
MS.2012.173

[54] Changyan Zhou and Ratnesh Kumar. 2012. Semantic Translation of Simulink Diagrams to Input/Output Extended Finite
Automata. Discrete Event Dynamic Systems 22, 2 (2012), 223–247. DOI:http://dx.doi.org/10.1007/s10626-010-0096-1

, Vol. 1, No. 1, Article 1. Publication date: January 201X.

http://dl.acm.org/citation.cfm?id=2830865.2830885
http://dx.doi.org/10.1007/978-3-642-10452-7_3
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1109/TEC.2014.2362716
http://dx.doi.org/10.1145/2568225.2568275
http://dx.doi.org/10.1145/566172.566213
http://dx.doi.org/10.1145/1629575.1629585
http://dx.doi.org/10.1145/1629575.1629585
http://dx.doi.org/10.1109/TSE.2013.30
http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1017/S0960129512000278
http://dx.doi.org/10.1017/S0960129512000278
http://dx.doi.org/10.1109/MS.2012.173
http://dx.doi.org/10.1109/MS.2012.173
http://dx.doi.org/10.1007/s10626-010-0096-1

	Abstract
	1 Introduction
	2 Cyber-Physical Design Reuse and Upgrade
	2.1 Related Work

	3 Cyber-Physical System Models
	3.1 Cyber-Physical Input-Output Automata
	3.2 Candidate Invariant Checking Problem

	4 Cyber-Physical Specifications and Mismatches
	4.1 Cyber-Physical Specifications
	4.2 Cyber-Physical Specification Mismatches

	5 Hynger: Generating Invariants for SLSF Models
	5.1 Dynamic Invariant Inference with Daikon

	6 Experimental Results
	6.1 Closed-Loop Buck Converter Cyber-Physical Specification Mismatch
	6.2 Abstract Fuel Control System Benchmarks

	7 Discussion
	8 Conclusion & Future Works
	Acknowledgments
	References
	References

