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Abstract. Steganography, or hiding messages in plain sight, is a
form of information hiding that is most commonly used for covert
communication. As modern steganographic mediums include im-
ages, text, audio, and video, this communication method is be-
ing increasingly used by bad actors to propagate malware, exfil-
trate data, and discreetly communicate. Current protection mech-
anisms rely upon steganalysis, or the detection of steganography,
but these approaches are dependent upon prior knowledge, such as
steganographic signatures from publicly available tools and statis-
tical knowledge about known hiding methods. These dependencies
render steganalysis useless against new or unique hiding methods,
which are becoming increasingly common with the application of
deep learning models. To mitigate the shortcomings of steganalysis,
this work focuses on a deep learning sanitization technique called
SUDS that is not reliant upon knowledge of steganographic hiding
techniques and is able to sanitize universal and dependent steganog-
raphy. SUDS is tested using least significant bit method (LSB), de-
pendent deep hiding (DDH), and universal deep hiding (UDH). We
demonstrate the capabilities and limitations of SUDS by answering
five research questions, including baseline comparisons and an ab-
lation study. Additionally, we apply SUDS to a real-world scenario,
where it is able to increase the resistance of a poisoned classifier
against attacks by 1375%.

1 Introduction
Steganography is the art of hiding information in plain sight in or-
der to discreetly communicate [5, 7]. Deriving from the Greek words
“steganos” (covered) and “grafia” (writing), steganography literally
means covered writing, and it is prevalent throughout much of his-
tory. Whereas cryptography uses encryption to make a message in-
comprehensible to the naked eye, steganography hides the traces of
the communication entirely. By human nature, an encrypted message
attracts attention and incites scrutiny. People are attracted to the al-
lure of breaking a cypher and are often successful in breaking encryp-
tion keys given enough time and computational resources. Steganog-
raphy, however, has the benefit of escaping the scrutiny of unassum-
ing eyes, offering a discreet method of communication which can be
used to hide both encrypted and unencrypted information, making it
a potentially dangerous attack vector for bad actors.

Steganography has been used across several creative mediums, in-
cluding books, knitting, and wax tablets. Modern approaches most
commonly rely on digital media such as images, audio, text, and
videos. As digital media is easily distributed and widely spread, the

∗ Corresponding Author. Email: preston.k.robinette@vanderbilt.edu

potential effects of steganography have grown exponentially, making
it important to be able to protect against this type of communication
if used by bad actors. While steganography can be used for appli-
cations like watermarking proprietary information [9] and light field
messaging [19], attackers can leverage this communication technique
to propagate malware [14], exfiltrate victim data [6], and communi-
cate.

In an effort to limit the adverse effects of steganography, recent
research has focused on steganalysis, or the detection of steganog-
raphy. If, for instance, an advertisement containing a malware pay-
load is detected on a web browser, this image can be removed
from the site, protecting clients from interacting with these mali-
cious images. Current steganalysis techniques rely on statistical im-
age tests and signatures associated with known steganography tech-
niques [11, 2, 12, 4, 3, 13]. Additionally, deep learning stegano-
graphic techniques utilize datasets of images created with publicly
available steganography tools. Existing detection methods, therefore,
rely on the assumption that a hiding signature or information about
a steganography technique is already known. What happens, then, as
new, not publically available hiding methods begin to surface, mak-
ing current detection techniques irrelevant? While an increasingly
difficult problem to address, detection should not be abandoned. In-
stead, it would be more advantageous to use detection in conjunction
with other protective mechanisms, providing a more robust protec-
tion system.

As such, this work focuses on a sanitization framework for image
steganography. The sanitization of an image eliminates any hidden
information within the image while keeping the quality of the ac-
tual image the same. Whereas detection is used to identify stegano-
graphic images, sanitization mitigates the use of steganography en-
tirely. Drawing upon research related to denoising images, this work
uses a variational autoencoder framework to create a deep learning
model that sanitizes universal and dependent steganography, called
SUDS. To the best of the authors’ knowledge, SUDS is the first san-
itization framework which can mitigate the effects of traditional, de-
pendent deep, and universal deep hiding. The contributions of this
work, therefore, are the following:

1. Implementation of a Robust Sanitizer. We construct and train a
framework capable of sanitizing traditional, dependent deep, and
universal deep hiding steganography techniques, called SUDS.

2. Demonstration of Sanitizer Capabilities We show the benefit
of this novel framework by evaluating SUDS on five capabilities:
ability to sanitize, comparison to noise, flexibility of the latent di-
mension (ablation study), ability to detect, and scalability.

3. Case Study Application. We demonstrate a use case of SUDS



whereby SUDS is able to protect against data poisoning, increas-
ing classifier resistance against attacks by 1375%.

2 Preliminaries
While steganography can be used across any medium, this work
refers to image steganography, where an image is an (c, h, w) ma-
trix, where c is the number of color channels, h is the height of the
image, and w is the width. An RGB image is then represented by an
(3, h, w) matrix and a grayscale image by an (1, h, w) matrix.

2.1 Steganography Nomenclature

Table 1: Steganography Notation

Term Symbol Definition

Cover C The image used to hide (or cover
up) a secret. A cover is combined
with a secret to create a container.

Secret S The image to be hidden.

Container C′ A cover image that contains a
secret. A container should look
identical to the cover used to con-
ceal the secret.

Revealed
Secret

S′ The secret revealed from the con-
tainer. The revealed secret should
be identical to the actual secret.

Sanitized Ĉ A sanitized image.

Revealed
Sanitized

Secret

Ŝ The secret revealed from a sani-
tized image.

Hide H A method to hide a secret within a
cover.

Reveal R A method to reveal the hidden
secret within a container.

Difference diff The difference calculation be-
tween images. This work uses the
L2 norm, also known as the mean
squared error.

Steganography usually consists of four components: a cover C, a
secret S, a container C′, and a revealed secret S′ [22, 1] as described
in Table 1. A hiding method H takes as input a cover and a secret
and produces a container such that the visible difference between the
original cover and the produced container is minimal. Written more
formally, H(C, S) = C′ s.t. diff (C′, C) is minimized, where diff in
this work is the L2 norm. A reveal function R then takes as input the
produced container and outputs the revealed secret S′ such that the
visible difference between the original secret and the revealed secret
is minimal, or R(C′) = S′ s.t. diff (S′, S) is minimized. An exam-
ple of this steganographic process is depicted on the Pre-Sanitization
side of Figure 2. In this work, we utilize Ĉ to represent a sanitized
image such that the image is sanitized with either noise or SUDS,
i.e., Ĉ ∈ {Ĉnoise , ĈSUDS}, and Ŝ to represent a secret revealed with
H from a sanitized image, i.e., H(Ĉ) = Ŝ.

2.2 Steganography Hiding Methods

Existing methods for steganography currently fall into three main
categories: traditional, dependent deep, and universal deep. We use

one from each category to highlight the robustness of the proposed
sanitization approach: traditional → Least Significant Bit Method
(LSB) [8], dependent deep → Dependent Deep Hiding (DDH)
[17, 21, 16, 15, 20, 23, 18, 1], and universal deep → Universal Deep
Hiding (UDH) [22]. We utilize our own implementation of LSB1 and
a CNN-based implementation of DDH and UDH from the same code
base2, which was chosen due to its dual functionality. The hyperpa-
rameters used during UDH and DDH training are shown in Table 2.
The main distinctions between these methods are highlighted in Fig-
ure 1, and we leave detailed descriptions of these methods to the
behest and curiosity of the reader.

Dependent on Cover?

Use of Neural Network? UDH

DDH LSB

yes no

yes no

Figure 1: Dichotomy of steganography used in this work.

2.3 Sanitization

Sanitization is a method of removing an intended secret from a con-
tainer image. It renders the message of the container incomprehen-
sible. Whereas detection is used to identify steganographic images,
sanitization mitigates the use of steganography entirely.

Noise Baseline A way to disrupt steganographic messages is to
add noise to images. This approach not only degrades the visual ren-
dering of the image, but it is also not a robust method for sanitiza-
tion. To create a baseline of sanitization, we apply Gaussian noise
to containers in this work. An image sanitized by noise is referred to
as Ĉnoise , i.e., Ĉnoise = clip(x + N (µ, σ),min = 0,max = 1),
where µ = 0, σ = 0.02, and the clip function keeps altered pixels
in a meaningful range. The µ and σ values were chosen to mimic the
maximum change of using LSB, which is approximately 6% for the
four least significant bits ( 15

255
∗ 100 = 6%).

Variational Autoencoder This work utilizes a variational autoen-
coder (VAE) as the framework for the sanitization model SUDS, as
shown in Figure 2. VAEs are a type of representation learning that
consist of an encoder and a decoder.

• Encoder: The encoder Enc takes as input an input image x from
a dataset D. The input image x ∈ Rchw is mapped to two differ-
ent vectors of feature size n, representing the mean µ ∈ Rn and
logarithm of the variance log σ2 ∈ Rn of n distributions, i.e.,
Enc(x) = µ, log σ2. A latent variable is then sampled from µ
and log σ2 to derive a latent vector z ∈ Rn as shown in Equation
(1), where ⊙ is the element-wise product and ϵ ∼ N (0, I). The
inclusion of ⊙ϵ in (1) is known as the reparametrization trick, and
it allows gradients to be computed and backpropagated through
the network.

1 SUDS Code: https://github.com/pkrobinette/suds-ecai-2023
2 DDH/UDH: https://github.com/ChaoningZhang/Universal-Deep-Hiding
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Figure 2: SUDS overview. After being trained, SUDS takes as input a cover or a container image x ∈ {C,C′} created with any type of
steganographic technique. Prior to being sanitized, the secret is recoverable, as demonstrated in the bottom-left of the figure S′. After

sanitization with SUDS, however, the reconstructed image Ĉ still looks the same as the input C′, but a secret is not recoverable as indicated
by the bottom-right of the figure Ŝ. This image, therefore, is successfully sanitized.

z = f (µ, log σ2) = µ+ e
1
2
log σ2

⊙ ϵ (1)

An encoder, therefore, maps an input image to a latent represen-
tation: Enc(x) = µ, log σ2 =⇒ z = f (µ, log σ2) s.t.
Rchw → Rn. The depiction of this process in Figure 2 shows
only σ∗ for simplicity. While e

1
2
log σ2

= σ, the output of Enc in
our implementation is represented as the logarithm of the variance
to simplify the computation of the Kullback-Leibler divergence
term discussed in Section 3.3.

• Decoder: Once mapped to a latent variable z, the decoder Dec
can then create a reconstruction of the original image x̂ ∈ Rchw

from this condensed representation, i.e., Dec(z) = x̂ s.t. Rn →
Rchw. The goal of the decoder is to reconstruct an image such that
diff (x, x̂) is minimal where diff is the mean-squared error or the
L2 norm.

In this work, input images are either a cover or container x ∈
{C,C′}, and the reconstructed image x̂ = ĈSUDS , where ĈSUDS is
an image sanitized by SUDS. An image “sanitized” by SUDS is then
an image that has been encoded and decoded by the SUDS frame-
work.

2.4 Image Metrics

In this work, we utilize mean-squared error (MSE) and peak-signal-
to-noise ratio (PSNR) image metrics described in Equations (2) and
(3) respectively, where A and B are the compared images of size (c,
h, w) and MAX is the maximum possible pixel value (for a given bit
depth).

MSE(A,B) =
1

chw

c∑
i=1

h∑
j=1

w∑
k=1

(Ai,j,k −Bi,j,k)
2 (2)

PSNR(A,B) = 10 log10

(
MAX 2

MSE(A,B)

)
(3)

3 Sanitizing Universal and Dependent
Steganography

We aim to mitigate the use of image steganography to disseminate
embedded secrets while preserving the integrity of the cover image

through sanitization. As detection methods rely on signatures from
known steganographic techniques, sanitization attempts to render the
secret irretrievable, regardless of the steganographic technique used
to hide the secret.

3.1 Sanitization via Variational Autoencoder

In order to address steganography sanitization, we utilize a varia-
tional autoencoder (VAE) to encode images into learned representa-
tions, which can then be decoded into a clean counterpart. We pro-
pose this solution as motivated by two properties related to VAEs:
robustness (encoder) and expressiveness (decoder).

Robustness. In regard to the robustness of the encoder, a stegano-
graphic image can be considered an error value added to the cover,
C′ = C + ϵ. If the VAE is robust, then any container within some
bound of the cover will be mapped to the same distribution of the
cover, i.e., Enc(C + ϵ) = Enc(C) s.t. |ϵ| < γ, where Enc is an en-
coder, ϵ is an error value, and γ is an arbitrary error bound. In other
words, covers and containers should be mapped to the same latent
representation if the model is robust.

Expressiveness. Whereas robustness is related to the encoder, ex-
pressiveness is related to the decoder. By encoding a potentially
steganographic image into a condensed representation, we create an
information bottleneck. This property helps to bound possible de-
coded images, which in turn decreases the potential to decode an
image from the representation which contains an embedded secret.
There are more possible outcomes from a network that relies on 784
pieces of information (the original image) than from a network that
uses only 128 pieces of information (the encoded latent space). The
latent space representation, therefore, limits the expressiveness of the
decoder, which aids in the sanitization process.

3.2 SUDS Framework Overview

Building upon these concepts, we propose SUDS, a VAE framework
which is able to sanitize universal and dependent steganography. As
shown in Figure 2, SUDS takes as an input a container or a cover
and produces a sanitized version of the input. Prior to sanitization,
the secret of the container C′ is recoverable, as indicated by the re-
vealed secret S′ in the bottom-left of the image. After sanitization,



the intended secret is no longer recoverable, and the image quality
is minimally different from that of the original cover used to create
the container. The attempted recovery of the secret Ŝ shown in the
bottom-right of the image is not the intended secret S, rendering the
attempted communication useless and the image successfully sani-
tized.

3.3 SUDS Algorithm Details

During training, SUDS takes as input covers C from a dataset D.
Each input image is mapped to a latent variable of size n, as de-
scribed in Section 2.3. For instance, if n = 128, the latent variable
will consist of 128 features sampled from Equation (1). To create a
smooth and continuous latent space, we encourage the learned dis-
tribution to resemble a normal distribution by adding a regularizing
term to the loss function, the Kullback-Leibler (KL) divergence, as
shown in (4). Here, qϕ(z|x) is the conditional probability distribution
of the latent variable z given a cover C and N (0, I) is the induced
normal distribution. The KL divergence is a measure of how different
one probability distribution is compared to another.

Lreg = KL(qϕ(z|C)||N (0, I)) (4)

Once mapped to a latent variable z, the encoded cover image is
then decoded to a reconstruction of the original image, referred to as
ĈSUDS . The reconstruction loss associated with the decoder is shown
in Equation (5), where Eqϕ(z|C) is expectation given the approximate
posterior distribution of the latent variable z given the input data C,
Ĉ is the reconstructed output of the decoder, and diff is the L2 norm.

Lr = Eqϕ(z|C)[diff (C, ĈSUDS )] (5)

The encoder and decoder are trained in tandem by combining their
regularization and reconstruction loss functions, as shown in Equa-
tion (6). Training occurs for a specified number of epochs, where one
epoch consists of all batched training data. It is important to note that
SUDS is not trained on steganographic images, only clean images.

L = Lr + Lreg (6)

4 Research Questions and Metrics
To evaluate SUDS, we seek to answer five questions:

1. RQ1: Ability to sanitize steganography → Is SUDS able to re-
move the presence of potential secrets while preserving the in-
tegrity of the cover? To answer this question, we first train SUDS
using the MNIST dataset as described in Section 3.3 and with the
hyperparameters shown in Table 2. The MNIST training dataset
consists of 60000 images (1, h, w) of handwritten digits from
numbers 0-9. After training, we then use 10000 images from the
MNIST test dataset to create containers using each of the hiding
methods, i.e. LSB, DDH, UDH. These containers are then san-
itized with SUDS and passed to each reveal function. If the in-
tended secret is discernible with any of the reveal functions, the
sanitizer is not effective at cleaning images. Additionally, we eval-
uate SUDS using peak signal-to-noise ratio (PSNR) and mean
squared error (MSE) metrics, which are commonly used image
metrics. These metrics are used to assess a sanitizer’s effect on the
input (x compared to Ĉ s.t. x ∈ {C,C′}) as well as its ability to
sanitize hidden secrets (S compared to Ŝ). RQ1 is positive if the
revealed secret after sanitization Ŝ is not the intended secret S,
i.e., Ŝ ̸≈ S where Ŝ = R(ĈSUDS ).

2. RQ2: Comparison to noise baseline → How does SUDS com-
pare to noise baseline techniques? We repeat the testing process
of RQ1 but replace SUDS with Gaussian noise to sanitize the con-
tainers. We then analyze the resulting noise MSE and PSNR val-
ues against those produced by SUDS. RQ2 is positive if SUDS is
able to outperform noise in MSE and PSNR values.

3. RQ3: Flexibility of the Latent Dimension → Does latent di-
mension size affect performance? We train SUDS on different
latent dimension sizes n to see if and when SUDS is no longer
able to sanitize a steganographic image. Using the same train-
ing framework described in Section 3.3, this case study tests
n ∈ {2, 4, 8, 16, 32, 64, 128} and evaluates each SUDS model
using MSE and PSNR image quality metrics. RQ3 is positive if a
majority (≥ 4) of the trained latent dimension sizes of SUDS are
able to sanitize secrets, as indicated by MSE and PSNR values.

4. RQ4: Ability to detect steganography → In addition to sanitiza-
tion, can SUDS be used to detect steganography? We use 10000
MNIST images of varying image types, i.e., cover images, LSB
containers, DDH containers, and UDH containers. These images
are then mapped to a latent variable z by using SUDS trained on
n = 8 features. The containers for each hiding method are created
using the same cover and secret across each method. To evaluate
detection capabilities, we calculate the mean and standard devi-
ation for each image type and digit. For instance, if Label = 4,
the resulting data is calculated across all covers with the label 4
for each image type. RQ4 is positive if the distributions across a
single digit are distinguishable.

5. RQ5: Scalability → Does SUDS scale to RGB images? We use
the CIFAR-10 dataset, which consists of 60000 RGB images
(3, 32, 32) from 10 different classes of various animals and trans-
portation vehicles. To train SUDS on CIFAR-10, we use the same
training setup detailed in Section 3.3. RQ5 is positive if the re-
vealed secret after sanitization Ŝ is not the intended secret S, i.e.,
Ŝ ̸≈ S where Ŝ = R(ĈSUDS ).

Table 2: Model Hyperparameter Values

Model Hyperparameter Value
epochs 100

n 128
SUDS batch size 128

optimizer Adam
learning rate 0.0001
image size 32
batch size 44

channel of cover 1
DDH/UDH channel of secret 1

norm “batch”
loss “l2”
beta 0.75

5 Experimental Results

The results of the SUDS sanitizer training and evaluation are de-
scribed in more detail below. These experiments were conducted on
a macOS Monterey 12.5.1 with a 2.3 GHz 8-Core Intel Core i9 pro-
cessor with 16 GB 2667 MHz DDR4 of memory.
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Figure 3: Image results for SUDS and noise sanitization on containers hidden with a) LSB, b) DDH, c) UDH. A cover C is combined with a
secret S to create a container C′. The container image is then sanitized with SUDS ĈSUDS or noise Ĉnoise as indicated by the group title. A

sanitizer is successful if S is not discernible from Ŝ. SUDS, therefore, is successful at sanitizing, while noise is not.

5.1 Sanitization Performance via SUDS

Using the evaluation approach described in RQ1, the sanitization
framework (SUDS) is able to effectively clean each of the container
images so that the revealed secret is not obtainable through any of the
reveal functions while keeping the original cover intact. As shown
by the left-hand group in Figure 3, ĈSUDS and C have limited vari-
ation, and S is not retrieved by Rddh(ĈSUDS ), Rudh(ĈSUDS ), or
Rlsb(ĈSUDS ) as shown by Ŝ.

The PSNR and MSE metrics shown at the top of Table 3 further
validate SUDS. The MSE and PSNR values of the Clean image pro-
vide a baseline for the steganographic images. The MSE and PSNR
values of the Ĉ column compare an input image x ∈ {C,C′} to a
sanitized image Ĉ ∈ {Ĉnoise , ĈSUDS}, i.e., ĈMSE = MSE(x, Ĉ)
and ĈPSNR = PSNR(x, Ĉ). A small MSE value indicates min-
imal changes between the input and the output image, and a high
PSNR value indicates that the signal outweighs the noise in the im-
age. SUDS is, therefore, able to reproduce input images with a high
quality regardless of whether the image is a container or cover. The
S′ column evaluates the reveal functions of each hide method be-
fore the container has been sanitized. The MSE and PSNR values
of this column compare to the revealed secret prior to sanitization
to the intended secret, i.e., S′

MSE = MSE(S, S′) and S′
PSNR =

PSNR(S, S′). As shown by the small MSE and high PSNR val-
ues, each of the reveal functions is effectively able to derive the in-
tended secret such that S ≈ S′. In the Ŝ column, however, the in-
tended secret is not discernible from a sanitized image. The MSE
and PSNR values for this column compare the intended secret to
the secret revealed after sanitization, i.e., ŜMSE = MSE(S, Ŝ) and
ŜPSNR = PSNR(S, Ŝ). The high MSE values and low PSNR values
confirm that the intended secret is not obtainable through the reveal
functions after sanitization. Thus, SUDS is effectively able to sani-
tize steganographic images, and RQ1 is positive.

5.2 Performance Comparison to Noise Baseline

In addition to SUDS, we also test a Gaussian noise baseline, as de-
scribed in RQ2. Table 3 shows the image quality metric performance

Table 3: Image metrics for SUDS and noise sanitization methods
(Section 5.1). Bolded Ŝ values mean successful sanitization.

Ĉ S′ Ŝ
Clean MSE 0.28 - -

PSNR 53.77 - -
LSB MSE 0.45 0.09 62.72

PSNR 51.72 58.46 30.17
SUDS DDH MSE 0.33 0.49 73.45

PSNR 53.03 51.73 29.47
UDH MSE 0.38 0.63 88.54

PSNR 52.36 50.23 28.66
Clean MSE 0.09 - -

PSNR 58.82 - -
LSB MSE 0.09 0.09 30.04

PSNR 58.49 58.46 33.37
Gaussian DDH MSE 0.09 0.49 38.1

PSNR 58.5 51.76 32.33
UDH MSE 0.12 0.63 57.58

PSNR 57.35 50.26 30.53

for the noise baseline sanitization technique. As indicated by the
bolded value in the Ŝ column, Gaussian noise is only effective at
sanitizing secrets hidden with UDH, and is therefore not a robust
solution. This is further validated by the middle group in Figure 3,
which shows the image results of using noise to sanitize. In the Ŝ
column, we can clearly see the secrets for both LSB and DDH. As a
result, SUDS outperforms Gaussian noise for sanitization, and RQ2
is positive.

Another benefit to SUDS compared to noise lies in its ability to
get closer to the original cover. When noise is added as a sanitization
technique, the image quality is degraded and the image is pushed
further from the actual rendering of the original image. With SUDS,
however, as it is trained to reconstruct cover images, the resulting
sanitized image gets closer to the original value. In this way, SUDS
works to “improve” an image’s quality, as shown by the Ĉ − C for
each respective method in Figure 3.



5.3 Effect of Latent Dimension Size

SUDS also works with a variety of feature space sizes. For RQ3, we
train SUDS on different feature sizes n to see if and when SUDS is
no longer able to sanitize a steganographic image. As shown in Fig-
ure 4, SUDS retains its ability to sanitize a secret, as indicated by the
high green-x line for each feature size. The sanitization performance
peaks between n = 64 and n = 32. While the sanitization perfor-
mance is latent-size agnostic, SUDS’s ability to reconstruct images
starts to deteriorate as n decreases, as shown by the high MSE val-
ues of the green-triangle line and the low PSNR values of the blue-
triangle line for n = 4 and n = 2. This result makes sense; as the
number of features decreases, the amount of information passed to
the decoder also decreases, making it difficult to accurately recon-
struct the original image. These results show that RQ3 is positive.
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Figure 4: MSE and PSNR values for SUDS trained on varying
feature sizes (n). SUDS is able to sanitize at each feature size as
indicated by the top green-x line, but its reconstruction ability

deteriorates as feature size decreases as shown by n = 4 and n = 2
on the green-triangle line.

5.4 Evaluation of Detection Capabilities

In addition to analyzing the impact of feature size on SUDS perfor-
mance, we also evaluate whether SUDS can be used as a detection
mechanism by analyzing where images get mapped to in the feature
space. From the results shown in Figure 5, each image, regardless of
the presence of a secret, is mapped to relatively the same distribution
per feature. As there is no distinction between covers and containers
as well as hiding methods in the feature space, SUDS cannot be used
for a detection mechanism based on mean and standard deviation
metrics. Thus, RQ4 is negative.

5.5 Scalability to RGB Images

SUDS is able to sanitize RGB images as well as grayscale images, as
indicated by the right-hand side of Figure 3. Once again, the intended
secret S is not discernible from Ŝ. Image reconstruction capabilities,
however, decline with RGB images, as shown by Ĉ. We believe that
this performance can be increased by additional hyperparameter tun-
ing, architecture tuning, and increased training epochs. From these
results, RQ5 is positive.
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Figure 5: The mean µ and standard deviation σ values for images of
a particular label (label ∈ {0, 1, 2, ..., 9}) mapped to a latent space

representation (z) from SUDS. The mean is represented by the
center dot of each line, and the standard deviation is represented by
the error bars of each line. From these results, the input images are

not distinguishable from the latent space.

5.6 Summary

In summary, RQ1 (ability to sanitize), RQ2 (comparison to noise),
RQ3 (flexibility), and RQ5 (scalability) are all positive while RQ4
(detection) is negative.

6 Example Application: Data Poisoning
To demonstrate a potential use case, we apply SUDS to a case study
involving data poisoning. Data poisoning is an adversarial machine
learning attack where a model is perturbed during training. This can
be caused by methods such as data injection and most commonly—
data manipulation. In data manipulation, an attacker has access to
the data used for training, and they can alter, add, or remove training
data as well as data labels to create backdoors in a model. Com-
mon forms of data manipulation include pattern injection, single-
pixel modifications, and steganography, which are visibly hard to
detect—especially in the case of steganography. Although there are
many methods to manipulate data for data poisoning, this case study
highlights the use of SUDS to mitigate a data poisoning attack that
utilizes steganographic perturbations.

Overview. Data poisoning usually occurs in three phases: prepa-
ration, training, and attack. Each of these phases is described in more
detail below.

1. Preparation: The data perturbation method is created, and the
data to be used during training is modified using this technique.

2. Training: The model is trained using the manipulated training
data.

3. Attack: The poisoned model is deployed. The attackers can then
craft an adversarial example to alter the intended behavior of the
poisoned model.



For this case study, the MNIST training dataset of 60000 images is
prepared using the deep dependent hiding (DDH) technique to per-
turb images. Using DDH, 40% of the training data are changed to a
container image, where the secret is randomly chosen with replace-
ment from the input set. The label of this container image is then
modified to the label of the randomly chosen secret hidden within it.
A classifier is then trained using this manipulated data to classify the
digit shown in the picture. If the data poisoning scheme is success-
ful, an attacker should be able to direct the prediction of the trained
network by selecting the desired classification as the secret of the
container image input.

This data poisoning technique is evaluated using 10000 test im-
ages, where 50% have been changed to container images and the
remaining 50% are kept clean. The data poisoning technique is
then tested again by incorporating SUDS between the client and the
trained network. In this test, the data distribution is identical to the
previous test, but all test data is sanitized prior to being classified
with the trained network.

Result. Table 4 shows the classification accuracy during testing
of both clean and container images with and without the use of
SUDS. The accuracy associated with the container images indicates
the classification of the intended secret to what was predicted by the
classifier—was the attacker successful in manipulating the classifier
to the intended secret? For instance, if an attacker hid a secret image
of label 6 in a cover image with a label of 4, the model would be
accurate if it predicted the secret label of 6. By using SUDS between
the client and the trained model, the resistance of the classifier to an
attack increases by 1375% = (100−0.56)−(100−93.26)

100−93.26
∗ 100, while

the performance for clean images only drops by 1%. SUDS, there-
fore, is successfully able to protect the classification system from bad
actors.

Table 4: Classification accuracy of clean and poisoned images, both
with using SUDS to protect against poisoned images and without

using SUDS (no SUDS).

Accuracy
Image Type no SUDS SUDS
clean (5000) 98.03 % 97.18%

containers (5000) 93.26% 0.56 %

7 Related Works

While SUDS is the first sanitization framework that can mitigate the
effects of traditional, dependent deep, and universal deep hiding to
the best of the authors’ knowledge, there are similar works which use
VAEs for protection. In [24], the authors show the promise of using
a variational autoencoder (VAE) to mitigate the transfer of Power-
Shell scripts hidden directly in images with Invoke-PSImage [24], a
publicly available hiding tool that uses least significant bit hiding3. In
this previous work, the sanitizer is evaluated on whether the resulting
steganographic image is detected by StegExpose, an open-source de-
tection tool for the least significant bit hiding methods. StegExpose,
though, is not a robust detection tool. Additionally, even small per-
turbations in scripts hidden in images can cause a script to become
non-executable. As images are more robust to perturbations, evaluat-
ing sanitization with image secrets provides better evaluation criteria

3 Invoke-PSImage: https://github.com/peewpw/Invoke-PSImage

for this approach. Additionally, while a sanitizer may be able to sani-
tize steganography resulting from one hiding technique, this does not
mean that it will be effective in sanitizing steganography with other
hiding techniques as each method and signature is unique.

A VAE has also been used to detect and repair adversarial pertur-
bations, which are modifications to inputs to cause misclassification.
In [10], the authors implement Magnet, which uses outlier detection
in the latent space to determine if an image is adversarial. As adver-
sarial techniques add noise, resulting images are mapped to different
parts of the latent space. During the repair phase, the outlier latent
representations are perturbed in the direction up the gradient to get
closer to the distribution of the actual training data, working to re-
move the added noise of the adversarial image. While steganography
is similar to an adversarial image, the “noise” of a steganographic im-
age, or the message, is bounded, i.e., the message must be retrievable
and make sense to the recipient. The bounded nature of steganogra-
phy results in images that are mapped to the same distribution in the
latent space (see Section 5.4) and, therefore, are not applicable to the
Magnet approach.

8 Conclusions

In this work, we demonstrate a sanitization model SUDS, which
is able to sanitize steganographic images from untrained stegano-
graphic techniques (traditional, dependent deep, and universal deep)
with more reliability than baseline sanitization methods. Whereas
SUDS sanitizes secrets for all hiding techniques used in this work,
the baseline noise sanitization technique only works 33% of the time
against these hiding techniques. In addition to performing more re-
liably compared to noise, SUDS also has the added benefit of pro-
ducing a sanitized image that is closer to that of the original cover
used to make a container, while noise degrades an image in order to
render the hidden secret incomprehensible. This allows SUDS to be
applied to many interesting case studies, such as protection against
data poisoning attacks, increasing resistance of a poisoned classi-
fier against attacks by 1375%. In the future, we would like to extend
SUDS to different steganographic mediums, such as videos, binaries,
and time series data, and test this approach against other representa-
tion learning models such as a generative adversarial network or dif-
fusion models. As such, this research lays the groundwork for future
exploration in comprehensive steganography protection systems.
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