Handling Failures in Cyber-Physical Systems:
Potential Directions

Taylor Johnson and Sayan Mitra

Coordinated Science Laboratory
University of lllinois at Urbana-Champaign
Real-Time Systems Symposium (RTSS) 2009

December 1, 2009

Motivational example from distributed computing

Consensus (synchronous)

m Every process has an input and all non-faulty ones must
decide on a common value in finite time

Motivational example from distributed computing

Consensus (synchronous)

m Every process has an input and all non-faulty ones must
decide on a common value in finite time

in spite of failures | processes (at least) | rounds
u f crash failures f+1 f+1
t Byzantine failures 3t +1 t+1

Motivational example from distributed computing

Consensus (synchronous)

m Every process has an input and all non-faulty ones must
decide on a common value in finite time

in spite of failures | processes (at least) | rounds
u f crash failures f+1 f+1
t Byzantine failures 3t + 1 t+1

m Natural question: how many processes are required to
tolerate both f crash failures and t Byzantine failures?

Motivational example from distributed computing

Consensus (synchronous)

m Every process has an input and all non-faulty ones must
decide on a common value in finite time

in spite of failures | processes (at least) | rounds
u f crash failures f+1 f+1
t Byzantine failures 3t + 1 t+1

m Natural question: how many processes are required to
tolerate both f crash failures and t Byzantine failures?

m CPS can suffer the previous failures and many more!

Motivational example from distributed computing

Consensus (synchronous)

m Every process has an input and all non-faulty ones must
decide on a common value in finite time

in spite of failures | processes (at least) | rounds

u f crash failures f+1 f+1

t Byzantine failures 3t +1 t+1
m Natural question: how many processes are required to
tolerate both f crash failures and t Byzantine failures?

m CPS can suffer the previous failures and many more!

v

Interdisciplinary research problem

Develop failure detection and mitigation methods for
cyber-physical systems

\

Outline

Introduction

Research problem

Potential Directions

Cyber-physical fault interaction

Physical state

Unsafe

Cyber-physical fault interaction

Cyber state

Unsafe

Cyber-physical fault interaction

Physical state Cyber state

Unsafe Unsafe

Classes of failures

Cyber (software) failures
m Distributed computing: crash; Byzantine
m General: bugs
m Real-time systems: timing (missing deadlines)

Physical failures

m Sensor; actuator and control surface
m Robustness

Failures between cyber and physical
Communications
Single, permanent, transient, intermittent, or incessant \

Prior work

Example solutions
m Simplex architecture
m Giotto
m Etherware

Prior work

Example solutions
m Simplex architecture
m Giotto
m Etherware

Common theme: solutions through abstraction!

Handling failures: active versus passive

Active (hnon-masking)
m Failure detectors

m Reliable failure detectors from unreliable processes =
reliable systems from unreliable components (e.g., COTS,
processes, stochastic processors, robustness, etc.)?

m Fault detection and isolation (FDI)

Passive (masking)
m Redundancy from the consensus example
m Self-stabilizing algorithms =- self-stabilizing systems?

A

Self-stabilizing algorithms

fault

closure

Not
Legal

convergence

Self-stabilizing systems?

Poor Good

performance performance

Formal methods and verification

m Why formal methods?

m Provable guarantees

m Successfully applied in a variety of problems
m Maturing tools and formalisms

Useful concepts

m Abstraction

m Compositional reasoning

m Temporal logic and verification
m Actor model

\

Challenges and questions

m Model cyber and physical faults in such a way that they can
be decoupled from one another, if possible

m Must make any solutions compositional to avoid explosion
of interaction cases

m Complexity of analyzing all these fault sources
simultaneously must be reduced: how does one fault
influence another influence another is intractable

m Impossibility results

m Formal methods challenges ([Emerson, Clarke, and
Sifakis, “Model checking: algorithmic verification and
debugging”, Nov. 2009]): model checking for (a) software,
(b) real-time systems, (c) hybrid systems, (d) probabilistic
systems, and compositional model checking

m Lots of work to be done, but many interesting directions!

Thank you and questions

Hopefully there are lots of questions to motivate the discussion! I

	Introduction
	Research problem
	Potential Directions

