
Operational models of piecewise-smooth systems ∗

Andrew Sogokon
Carnegie Mellon University

Pittsburgh, PA, USA
asogokon@cs.cmu.edu

Khalil Ghorbal
INRIA

Rennes, France
khalil.ghorbal@inria.fr

Taylor T. Johnson
Vanderbilt University
Nashville, TN, USA

taylor.johnson@vanderbilt.edu

ABSTRACT
This paper studies ways of constructing meaningful opera-
tional models of piecewise-smooth systems (PWS). The sys-
tems we consider are described by polynomial vector fields
defined on non-overlapping semi-algebraic sets, which form a
partition of the state space. Our approach is to give meaning
to motion in systems of this type by automatically synthe-
sizing operational models in the form of hybrid automata
(HA). Despite appearances, it is in practice often difficult
to arrive at satisfactory HA models of PWS. The different
ways of building operational models that we explore in our
approach can be thought of as defining different semantics
for the underlying PWS. These differences have a number of
interesting nuances related to phenomena such as chatter-
ing, non-determinism, so-called mythical modes and sliding
behaviour.

Keywords
piecewise-smooth systems, hybrid automata, operational
models, discontinuous differential equations.

1. INTRODUCTION
Many processes in which smooth continuous motion can

be interrupted by discrete events can be represented by or-
dinary differential equations (ODEs) with discontinuities.
As such, they are part of a broader class of dynamical sys-
tems, known as hybrid (also cyber-physical) systems, which
combine discrete and continuous behaviour under a unified
framework1. Hybrid systems are increasingly used in mod-

∗This work was supported by the Air Force Research Labo-
ratory (AFRL) through contract number FA8750-15-1-0105
and the Air Force Office of Scientific Research (AFOSR)
under contract numbers FA9550-15-1-0258 and FA9550-16-
1-0246.
1Indeed, some of the earliest research in hybrid systems, e.g.
in the work of Witsenhausen [44], began by considering pre-
cisely the systems where there are no “jumps” in the contin-
uous state, but abrupt changes in the dynamics are possible.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

EMSOFT’17 Seoul, Korea

ACM ISBN .

DOI: 10.1145/3126506

elling and analyzing the behaviour of modern control sys-
tems employing embedded devices.

Systems described by discontinuous ODEs are sometimes
referred to as piecewise-smooth systems (PWS). Their repre-
sentation has proved popular in the control systems commu-
nity because it provides a concise and convenient notation.
However, a discontinuous system of ODEs explicitly only
conveys information about the continuous dynamics of the
system, along with a set of regions where state evolution
is smooth; the discrete transition behaviour of the system
between these regions is not explicitly elaborated.

There exist a number of specification formalisms, such as
hybrid automata [1] and hybrid programs [34], whose seman-
tics is clearly defined and which can serve as operational
models for hybrid systems. Hybrid automata in particular
have become very popular in the verification community. In
a hybrid automaton, the discrete transition behaviour of the
hybrid system is specified explicitly, which can often make
these automata large and unwieldy even when specifying hy-
brid systems of relatively modest size. As a specification for-
malism, discontinuous ODEs provide a much more concise
and manageable description of piecewise-smooth systems, al-
beit leaving many important details about their behaviour
implicit.

Researchers working in computer science and control sys-
tems tend to put different emphasis on the importance of for-
mal modelling and tend to use significantly different meth-
ods to model and reason about systems. One particular
aspect of these differences is manifest in the temptation
to treat hybrid automata näıvely as being merely syntactic
variants of discontinuous ODEs when modelling piecewise-
smooth systems. Subscribing to this view is, however, rather
dangerous and can lead to unintended behaviour in the re-
sulting models.

In this paper we study the challenges presented by the
problem of transforming concise descriptions of piecewise-
smooth systems in the form of discontinuous ODEs into
formal operational models in the form of hybrid automata.
Transformations that result in satisfactory models are, as
we shall see, far from trivial to both formulate and ef-
fect. We develop automatic procedures for transforming
piecewise-smooth systems with polynomial dynamics and
semi-algebraic constraints into hybrid automata.

A number of different interpretations of the operational
meaning of piecewise-smooth systems are possible, creating
a degree of ambiguity about their intended behaviour (i.e.
their semantics); this gives rise to significant differences in
the form and the behaviour of the hybrid automata that one

10.1145/3126506

can construct. A number of important choices can be exer-
cised in transforming PWS to HA in order to ensure that
the resulting operational models reflect the desired interpre-
tation.

1.1 Contributions
In this paper we describe a method for automatically con-

structing hybrid automata from descriptions of piecewise-
smooth polynomial systems and thus build their operational
models. We discuss aspects of the semantics of transi-
tions directly related to phenomena such as chattering, non-
determinism and the presence of so-called mythical modes in
the underlying systems. We illustrate how our technique can
be applied to model systems with so-called sliding modes.
We conclude with a discussion of related work and an out-
look for future research.

2. MATHEMATICAL PRELIMINARIES

2.1 Continuous systems and vector fields
A general n-dimensional autonomous system of first-order

ODEs has the form:

ẋ1 = f1(x1, x2, . . . , xn),

...

ẋn = fn(x1, x2, . . . , xn),

where fi : Rn → R are real-valued functions (typically C1)
for each i = 1, . . . , n and ẋi denotes the derivative of xi
with respect to time, i.e. dxi

dt
. Such a system defines a

vector field f : Rn → Rn, where f(x) = (f1(x), . . . , fn(x))
for any x ∈ Rn. We will denote autonomous systems of
ODEs using the more concise vector field notation, i.e. by
writing ẋ = f(x).

In applications, it is often the case that the state of the
system is required to only evolve within some prescribed
set of “legal” states M ⊆ Rn, which is known as the mode
invariant, or evolution constraint. We will express this re-
quirement concisely by writing ẋ = f(x), x ∈M . When no
evolution constraint is specified, M is assumed to be Rn.

A solution to the initial value problem for the system of
ODEs ẋ = f(x) with initial value x0 ∈ Rn is a differen-
tiable function x : (a, b)→ Rn, where x(t) is defined for all
t within some non-empty extended real interval including
zero, i.e. t ∈ (a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and
such that x(0) = x0 and d

dt
x(t) = f(x(t)) for all t ∈ (a, b).

In what follows, we will denote the solution x(t) by writ-
ing ϕt(x0), to emphasize the initial value. If the function
ϕt(x0) is available in closed-form2, one can analyze the tem-
poral behaviour of the system initialized in the state x0 by
analyzing the closed-form expression. In practice, however,
it has long been established that explicit closed-form solu-
tions to non-linear ODEs are highly uncommon [20].

Systems of ODEs whose right-hand sides are locally
Lipschitz continuous (e.g. polynomial functions fall un-
der this class) guarantee existence of unique solutions on
some non-trivial time interval (a, b) for any initial value
x0 ∈ Rn (by the Cauchy-Lipschitz/Picard-Lindelöf theorem;
see e.g. [39]).

2By this we understand a finite expression in terms
of polynomials and elementary special functions such as
sin, cos, exp, ln, etc.

2.2 Piecewise-smooth vector fields
Given a partition of some set M ⊆ Rn into finitely many

non-overlapping subsets M1, . . . ,Mm, we consider a finite
family of vector fields fi : Rn → Rn, where i ∈ {1, . . . ,m}.
By assigning the vector field fi from this family to the set Mi

for each i = 1, . . . ,m, we arrive at a vector field F : M → Rn
which is defined piecewise on M , i.e.

F(x) =

f1(x) x ∈M1 ,

...

fm(x) x ∈Mm .

(1)

At this point, let us remark that while the sets M1, . . . ,Mm

need not be differentiable manifolds, the corresponding vec-
tor fields f1, . . . , fm are defined on Rn. It is therefore mean-
ingful to speak about motion occurring within the manifold
Rn according to the systems of ODEs ẋ = fi(x), but con-
fined to the states within Mi. With this intuition, the vector
field F can be interpreted as describing a system of ODEs
ẋ = F(x) with a piecewise-defined (and potentially discon-
tinuous) right-hand side, i.e. explicitly given by

ẋ = F(x) (2)

To precisely describe the motion taking place (within the
set M) in such a system, in general one may no longer call
upon the classical notion of solution developed for contin-
uous ODEs.3 Indeed, there is no single universally agreed-
upon definition of solution for systems of ODEs with dis-
continuities. Extensions of the classical notion, such as
Carathéodory solutions, among others [19], have been sug-
gested, but these differ in the way they model certain dy-
namic behaviours and therefore give different meaning (i.e.
semantics) to systems. An excellent accessible survey of
discontinuous ODEs and the various generalized solution
concepts developed for them was given by Cortés in [8].
Intuitively, one expects generalized solutions to piecewise-
smooth systems to be continuous functions of time, because
these systems do not allow for discontinuous jumps in their
(continuous) state, but with the differentiability requirement
for the solution (in some way) appropriately relaxed. Solu-
tions for more general classes of hybrid systems (which may
allow discontinuous jumps in the state) are trickier, and re-
quire generalized time domains, such as hybrid time domains
explored in the work of Sanfelice, Goebel and Teel [36, 18].
In our approach, we will not directly make use of these no-
tions, relying instead on the semantics of hybrid automata
(after Lygeros et al. [27]), which we shall describe presently.

2.3 Hybrid automata as operational models
Hybrid automata were first introduced by Alur et al. [1]

as a formal specification language for hybrid systems. They
provide operational models for hybrid systems in the same
way that transition systems provide models for discrete com-
puter programs, making it possible to give a precise math-
ematical description of their execution. We will employ the
term evolution when speaking about hybrid systems (just as
with continuous systems) and use the term execution only in
the context of operational models, such as hybrid automata.

As formal models, hybrid automata have been used exten-
sively in both modelling [12] and verification of properties

3E.g. it is continuity of the right-hand side that guarantees
the existence of solutions (by Peano’s theorem).

in hybrid systems [14, 40]. Below we reproduce a very con-
venient definition of hybrid automata and their execution,
due to Lygeros et al. [27]; for alternative definitions the in-
terested reader is invited to consult [1, 22, 42].

Definition 1. Formally, a hybrid automaton HA is
given by an 8-tuple

HA = (Q,X,F, Init,Dom, E,G,R),

where the elements are as follows:

• Q = {q1, q2, . . . , qm} is a finite set of discrete states,

• X = Rn is a set of continuous states,

• F : Q×X → Rn is a vector field,

• Init ⊆ Q×X is a set of initial states,

• Dom : Q→ 2X is a mode domain (also invariant),

• E ⊆ Q×Q is a set of edges (also discrete transitions),

• G : E → 2X is a guard condition,

• R : E ×X → 2X is a reset map.

Standard assumptions with this definition are that guard
conditions are non-empty whenever they are specified, i.e.
for all e ∈ E it is the case that G(e) 6= ∅ and also that reset
maps can only take the system to a genuine continuous state,
i.e. for all x ∈ G(e), R(e, x) 6= ∅.

2.3.1 Semantics of hybrid automata
A hybrid time trajectory is a finite or infinite sequence of

contiguous time intervals starting at 0, where the end points
are interpreted as times at which a discrete event, such as
a transition, occurs. More formally, following [27], a hybrid
time trajectory is a sequence of intervals τ = {Ii}Ni=0, for
which Ii = [τi, τ

′
i] for all i < N , where N ∈ N ∪ {∞},

and τi ≤ τ ′i = τi+1 for all i. If the sequence is finite, i.e.
if N < ∞, then either IN = [τN , τ

′
N] or IN = [τN , τ

′
N).

Intuitively, one may think of τi as the times at which discrete
transitions occur.

An execution (or a run) of a hybrid automaton is defined
to be the triple (τ, q, ϕit(x)), where τ is a hybrid time tra-
jectory, q : 〈τ〉 → Q, where 〈τ〉 is defined to be the set
{0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise [27], is
a map and ϕit(x) is a collection of differentiable functions
ϕit(x) : Ii → Rn such that (q(0), ϕ0

0(x)) ∈ Init and for all
t ∈ [τi, τ

′
i) it is the case that ẋ = F (q(i), ϕit(x)) and ϕit(x) ∈

Dom(q(i)). It is also required that transitions respect the
guards and the reset maps, i.e. e = (q(i), q(i + 1)) ∈ E,
ϕiτ ′i

(x) ∈ G(e) and (ϕiτ ′i
(x), ϕi+1

τi+1
(x)) ∈ R(e).

3. PROBLEM OVERVIEW
This section gives an overview of the challenges associated

with modelling piecewise-smooth systems using the hybrid
automaton formalism.

If one were to näıvely translate a system of the form shown
in (2) into a hybrid automaton, as a first step one could
simply take the sets M1, . . . ,Mm to be the mode invari-
ants of the discrete states in the automaton (i.e. by letting
Dom in Definition 1 be qi 7→ Mi for each i = 1, . . . ,m)
and set the continuous dynamics within these modes to be
governed by the differential equation ẋ = fi(x), i.e. let-
ting the vector field F (qi,x) = fi(x) for each i = 1, . . . ,m,
respectively. The resulting hybrid automaton would have

|Q| = m discrete states and no discrete transitions between
them. Clearly, this would not be an adequate model, since
the original system will most likely evolve into and out of the
sets M1, . . . ,Mm. This fact raises an immediate problem: in
order to have discrete transitions in the hybrid automaton
one is required to specify their enabling guards, i.e. sets
of states within the mode invariant of the outgoing discrete
state in which a discrete transition is possible.

q1

ẋ = 1
x < 0

q2

ẋ = 2
x = 0

q3

ẋ = 3
x > 0

x = 0 x = 0

Figure 1: Näıve construction (mode transitions impossible).

To appreciate the problem more fully, let us consider a
simple 1-dimensional system defined on the partition of the
real line R into three regions: x < 0, x = 0 and x > 0, and
where the vector fields are respectively given by f1(x) = 1,
f2(x) = 2 and f3(x) = 3 (i.e. ẋ = 1, ẋ = 2, and ẋ = 3)
inside each region. Clearly, one expects this system, when
started inside x < 0, to transition into x = 0 and then
to x > 0. In order for a hybrid automaton to faithfully
model the behaviour of this system, we require two discrete
transitions that take the state from x < 0 to x = 0 and
from x = 0 to x > 0; however, in the former transition it is
not possible to specify x = 0 to be the guard (as shown in
Fig. 1), since this set lies outside of the mode invariant x < 0
of the outgoing discrete state. It is possible to declare the
transition guard to be in some thin layer near the boundary,
e.g. δ < x < 0, where − 1

δ
is large, but any such choice of δ

would be rather arbitrary in the general case. Furthermore,
there would remain another important problem, this time
with the latter transition from x = 0 to x > 0: in order to
make such a transition without creating discontinuities (in
this case “gaps”) in the trajectory through reset maps, the
state of the system needs to lie within the mode invariant
of the destination discrete state when the transition guard
is enabled. The guard x = 0 is thus also unsuitable in this
case and there is no easy fix to this problem.

Instead of using M1, . . . ,Mm as mode invariants in the
automaton, one may instead opt to use their closures
M1, . . . ,Mm with a view to enabling the transition guards
on appropriate subsets of the boundaries ∂M1, . . . , ∂Mm,
which would now lie inside the corresponding mode invari-
ants. This approach, while conceptually simple, has a num-
ber of serious deficiencies and results in hybrid automata
that exhibit chattering runs, i.e. can perform an arbitrary
number of discrete transitions without advancing the con-
tinuous state or time.

The use of set closures additionally overlooks an impor-
tant computational drawback, which is that closures are typ-
ically very difficult to compute exactly for important classes
for sets, such as e.g. semi-algebraic sets (i.e. sets described
by a finite Boolean combination of polynomial equalities and
inequalities; see e.g. [28, Definition 8.6.1]).

Remark 1. In general for semi-algebraic sets, S cannot
be obtained from S by syntactically replacing every instance
of strict inequalities in its description by non-strict inequal-
ities (e.g. x3 − x2 ≥ 0 is not the closure of x3 − x2 > 0) [3,
Remark 3.2]. The closure of a semi-algebraic set S is given

by the set

S = {x ∈ Rn | ∀ r > 0. ∃y ∈ S. ‖y − x‖2 < r2},

where the norm ‖‖ is the standard Euclidean distance (see
e.g. [3, Chapter 3]). Let the set S be described by a
quantifier-free formula in the theory of real arithmetic with
free variables x1, . . . , xn. By performing a syntactic substi-
tution of the free variables xi by yi (i = 1, . . . , n) everywhere
in the formula, one obtains a quantifier-free formula in the
variables y1, . . . , yn. The closure S can then be characterized
by the formula

∀ r > 0. ∃ y1, . . . , yn. S ∧ (y1 − x1)2 + · · ·+ (yn − xn)2 < r2,

where x1, . . . , xn are treated as fresh free variables and r is
a fresh bound variable. It is therefore possible to apply real
quantifier elimination to reduce this formula to an equivalent
one that is quantifier-free and features only the free variables
x1, . . . , xn.

Real quantifier elimination (QE) is computationally ex-
pensive, having complexity doubly-exponential in the num-
ber of quantifier alternations [10]. The popular CAD algo-
rithm for real QE, is doubly-exponential in the number of
variables [4], which makes it impractical for problems with
a large number of variables (using currently existing imple-
mentations).

In this paper we pursue a very different approach to con-
structing HA operational models of PWS, which does not
require computing set closures , but instead requires only
the “relevant” subsets on their boundaries and relies funda-
mentally on the notion of “entry” and “exit” sets that will be
the subject of the following section.

4. OPERATIONAL MODELS
This section will review some important definitions before

presenting an algorithm for automatically generating HA
operational models of PWS.

4.1 Fundamental Definitions
We start by defining an important set that will shortly

become of interest:

Definition 2 (Inward Crossing Set).

Enterf(S) ≡ {x ∈ Rn | ∃ ε > 0.

∀ t ∈ (0, ε). ϕt(x) ∈ S ∧ ∀ t ∈ (−ε, 0). ϕt(x) 6∈ S}

where ϕt(x) denotes the (unique) solution to the locally
Lipschitz-continuous system of ODEs ẋ = f(x).

The intuition, as suggested by the name, is that Enterf(S)
describes the states at which the system is about to evolve
inside S, after having only just evolved outside of S. Like-
wise, we define Exitf(S) to be the set of states at which
the system is about to evolve outside of S, after having
only just evolved inside, i.e. Exitf(S) ≡ Enterf(¬S), where
¬S := Rn \S. Note that such states need not necessarily lie
within S itself and may lie outside; however, they necessar-
ily lie on the boundary of S. We observe that the crossing
set, by its very definition, can be expressed by means of one
fundamental building block.

Lemma 1 (Crossing Set Deconstruction).
Enterf(S) ≡ Inf(S) ∩ In−f(¬S) , where

Inf(S) ≡ {x ∈ Rn | ∃ ε > 0. ∀ t ∈ (0, ε). ϕt(x) ∈ S}.

Intuitively, Inf(S) denotes the states in Rn from which the
motion of the system takes place within the set S for some
time segment immediately following 0 (i.e. in the immediate
future). By analogy, when considering −f, the reverse of the
vector field f, In−f(S) denotes the states in Rn from which
the motion of the system took place within the set S for
some time segment immediately preceding 0 (i.e. in the
immediate past).

In the special case when the system ẋ = f(x) has poly-
nomial right-hand sides and S is a semi-algebraic set, the
sets Inf(S), and hence In−f(S), are also semi-algebraic and
can be computed exactly (a result due to Liu et al. [25]).
As a consequence, the sets Enterf(S) and Exitf(S) are also
computable and semi-algebraic under these assumptions.

We stress the fact that the boundary of S need not be
included in Enterf(S) ∪ Exitf(S). In particular, the set

Bouncef(S) ≡ Inf(S) ∩ In−f(S)

describes those states that may leave S momentarily at a
point while evolving within S before and after the “bounce”
and can therefore lie outside of Enterf(S) ∪ Exitf(S). Ap-
pendix B provides an illustration to help develop some in-
tuition about the meaning of these sets.

4.2 Generating Hybrid Automata
We now have at our disposal the machinery necessary

for building operational models of piecewise-smooth systems
ẋ = F(x), i.e. systems of the form:

ẋ =

f1(x) x ∈M1 ,

...

fm(x) x ∈Mm .

Given such a system, our aim is to synthesize a hybrid au-
tomaton that provides an adequate model of the behaviour
of the system. To do this, our approach we will be to first
augment the original invariant modes of the system Mi with
additional states, before they can become mode invariants
of a hybrid automaton. This step requires a definition.

Definition 3. Given a semi-algebraic set S ⊆ Rn and a
system of polynomial ODEs ẋ = f(x), the augmented set of
S with respect to this system, Aug(S, f), is defined by

Aug(S, f) ≡ S ∪ Enterf(S) ∪ Exitf(S) ∪ Bouncef(S) .

In the context of piecewise-smooth systems of the form
ẋ = F(x), whenever we wish to augment the set Mi with re-
spect to the system ẋ = fi(x), we shall adopt a more concise
notation and simply write Mi, i.e. Mi ≡ Aug(Mi, fi).

The definition extends each invariant mode S with its “en-
try”, “exit”and“bounce”sets. The main intuition being that
if the system was to enter or exit the mode invariant S with
respect to the dynamics f then it will do so by necessarily
crossing those sets. The set Bouncef(S) allows the evolution
to continue within S after “momentarily exiting” S. If in
addition the mode invariants have to satisfy a global con-
straint M , then it should be accounted for by intersecting it
with Aug(Mi, fi).

Algorithm 1 gives a pseudocode procedure for generating
a hybrid automaton HAF. The procedure begins construct-
ing the automaton by first creating m distinct discrete states
Q = {q1, . . . , qm} (line 1), defining X to be Rn (line 2) and

creating a set of edges (i.e. transitions) E by computing the
Cartesian product Q×Q and removing all edges of the form
(qi, qi), i.e. removing all stuttering/self-looping transitions
(line 3). It then proceeds to initially assign the empty set
to all the remaining variables on line 4. The algorithm then
proceeds to create the modes of the hybrid automaton HAF

in its first loop (lines 5–12), where it builds the extensional
definition of F by assigning the vector field fi to the discrete
state qi (line 6), augmenting each set Mi with its “entry”,
“exit” and “bounce” sets (line 7) and using this to build an
extensional definition of the Dom mapping (line 8) which
provides the mode invariant Mi for each state qi of the hy-
brid automaton. Lines 9–11 are responsible for converting
the initial set of states for the PWS into one for the hy-
brid automaton (this step can in fact be factored out of the
algorithm and performed separately).

The second loop of the algorithm (lines 13–16) constructs
the discrete transitions and is responsible for defining the
discrete transition behaviour of the resulting automaton.
The loop iterates through all the transitions constructed on
line 3 and defines the guards (line 14) and reset maps (line
15) associated with each transition. The reset map is cho-
sen to be the identity and therefore does not affect the state
of the system upon taking any transition. Different pos-
sible choices for the guard condition GC(i, j) (line 14) are
discussed in the next section.

Data: M ⊆ Rn,M1, . . . ,Mm ⊆M, f1, . . . , fm : Rn →
Rn, X0 ⊆M

Result: Hybrid automaton HAF

1 Q← {q1, . . . , qm};
2 X ← Rn;
3 E ← Q×Q \ {(q1, q1), (q2, q2), . . . (qm, qm)};
4 Init,Dom, F,G,R← ∅;
5 foreach i ∈ {1, . . . ,m} do
6 F ← F ∪ {((qi,x), fi(x))};
7 Mi ← Aug(Mi, fi) ∩M ;
8 Dom← Dom ∪ {qi 7→Mi};
9 if X0 ∩Mi 6= ∅ then

10 Init← Init ∪ {(qi,x) | x ∈Mi ∩X0}
11 end

12 end
13 foreach e = (qi, qj) ∈ E do
14 G← G ∪ {(e,GC(i, j))};
15 R← R ∪ {((qi, qj),x 7→ {x})}
16 end
17 return (Q,X,F, Init,Dom, E,G,R)

Algorithm 1: Procedure for synthesizing a HA from
PWS.

4.3 Discrete Transition Behaviour
The transition guard G(e) = GC(i, j), i 6= j, for the tran-

sition qi → qj entirely determines the discrete transition be-
haviour of the automaton. In what follows, we will consider
three choices for this formula.

Remark 2. We stress the fact that these are by no means
the only possible semantics; they are primarily meant to ex-
emplify how the method works and how one can adapt Al-
gorithm 1 to generate operational models exhibiting qualita-
tively different behaviours.

Recall that mode qi (resp. qj) has mode invariant Mi (resp.
Mj).

I ≡ Mi ∧Mj ∧ Infj (Mj)

II ≡ I ∧ ¬Enterfi(Mi) ∧ ¬Bouncefj (Mj)

III ≡ I ∧ ¬Infi(Mi)

Informally, these formulas are characterizing the sets of
states where (1) the augmented mode invariants Mi and
Mj intersect to allow for continuous transitions and (2)
where the trajectory of the system in mode qj can evolve
within that mode for some time, hence the intersection with
Infj (Mj). Formulas II and III impose additional constraints
on the guard. Namely, formula II additionally requires that
the guard does not feature states in the intersection of the
“entering” set of the outgoing state and the “bounce” set of
the incoming state. As will be seen in later sections, this
is primarily done to eliminate so-called chattering in the
model. Formula III is different in that it only enables a
transition guard if no further continuous motion is possible
within the mode. This has the effect that transitions must
be taken precisely when they are enabled.

Replacing GC(i, j) in line 14 of Algorithm 1 by formula I,
II or III will generally result in a different operational model
which can exhibit very different behaviour. In what follows,
we will refer to these formulas as respectively defining guard
conditions of type I, II and III.

4.4 Computability
An operational model of a PWS in the form of a hy-

brid automaton is computable using Algorithm 1 when-
ever the vector fields f1, . . . , fm are polynomial and the sets
M1, . . . ,Mm,M and X0 are semi-algebraic.

We recall that a set is semi-algebraic if it is char-
acterized by a finite Boolean combination of polyno-
mial equations and inequalities. Thus, the formula
x1 > 0 ∧ x2 = 0 ∨ x32 − x1 ≤ 0, where the symbols x1, x2 are
interpreted over the real numbers, characterizes the semi-
algebraic set {(x1, x2) ∈ R2 | x1 > 0∧x2 = 0∨x32−x1 ≤ 0}.
It suffices to consider formulas without quantifiers, e.g. ∀
and ∃, since the theory of real arithmetic admits quantifier
elimination [38] and therefore any formula featuring quanti-
fiers may be reduced to an equivalent quantifier-free formula
using a terminating procedure.4

It was shown in [25] that the set Inf(S) can be computed
exactly by employing higher-order Lie derivatives and the
ascending chain property of Noetherian rings. A Lie deriva-
tive of a polynomial p : Rn → R with respect to the polyno-
mial vector field f : Rn → Rn is also a polynomial denoted
Lf(p) and defined as Lf(p) ≡ ∇p · f =

∑n
i=1

∂p
∂xi

fi. It gives

the total derivative of the p with respect to time, i.e. the
rate of change of p along the solutions to the corresponding
system of ODEs. Higher-order Lie derivatives are defined
inductively as Lkf (p) = Lf(L

k−1
f (p)), with L0

f (p) = p.
In addition to [25], a description of the main idea behind

the procedure for constructing Inf(S) may be found in [17,
Section 5.4]; a brief sketch of this construction is also given in
Appendix A of this article. Similar ideas employing higher-
order Lie derivatives and ascending chains of ideals have
also appeared elsewhere, e.g. [33, 16]. As a consequence,

4A number of algorithms have been developed since
Tarski’s [38] and Seidenberg’s [37] seminal papers, e.g. the
CAD algorithm due to Collins [6].

the sets Enterf(S), Exitf(S) and Bouncef(S) are also semi-
algebraic and may be computed exactly using a terminating
algorithm.

5. DYNAMIC PROPERTIES OF OPERA-
TIONAL MODELS

This section will illustrate some of the dynamic phenom-
ena observed in the operational models that we can compute
using Algorithm 1 and will discuss some of the differences
in their behaviour when different types of guard conditions
are employed.

5.1 Non-determinism
Non-determinism occurs when the piecewise-smooth sys-

tem may evolve inside more than one of its modes. At first
sight, this may look surprising because in a PWS any state
x ∈ M belongs to exactly one region Mi, i ∈ {1, . . . ,m},
if one indeed has a mathematical partition of M into these
regions, and therefore there cannot be any ambiguity in the
choice of the ODEs that should govern the continuous state
evolution at x. However, generalized solutions to the system
at x may not be unique even when the ODEs inside each
mode all have unique solutions when considered separately.
This is mirrored in our operational models, where we aug-
ment the regions Mi with their respective “entry” and “exit”
sets to obtain the augmented mode invariants Mi in the hy-
brid automaton. One may face a scenario where x ∈ Mi

and x ∈ Mj , with i 6= j, and both transition guards be-
tween the two states qi and qj are enabled. For instance,
x may lie in a region where both Mi ∧Mj ∧ Infi(Mi) and
Mi ∧Mj ∧ Infj (Mj) hold true.

The standard semantics of transition guards of hybrid au-
tomata is that they enable transitions, but do not force them
(this is known as non-urgent, or may semantics [13]). Thus,
while there is no ambiguity about the initial discrete state
of the hybrid automaton for any given x ∈M , the system is
free to take an enabled transition immediately after it starts
evolving. This non-determinism can be informally under-
stood as capturing the “instability” that arbitrarily small
perturbations in the initial state can cause in the mode
switching behaviour of the piecewise-smooth system.

5.2 Chattering Runs
A phenomenon known as chatter is traditionally associ-

ated with so-called Zeno behaviour that can occur in mathe-
matical models of hybrid systems and can present a problem
for their simulation and verification. This behaviour is non-
physical and manifests itself in the possibility of performing
an infinite number of transition in a finite amount of time.

For example, a hybrid automaton will admit chattering
runs whenever for two distinct states qi and qj there are
transitions in both directions such that their respective tran-
sition guards have non-empty intersection. Any state x
within this intersection can shuttle back and forth between
the states qi and qj an arbitrary (though perhaps not infi-
nite) number of times.

As an example, let us consider a PWS with two modes:

ẋ = f1(x) ≡

{
ẋ1 = 0 ,

ẋ2 = x22 + 2 ,
x1 ≤ 0 ,

ẋ = f2(x) ≡

{
ẋ1 = x1 + 4x2 − x1x2 ,
ẋ2 = x22 − x1 + 2 ,

x1 > 0.

By running Algorithm 1 with guard conditions of type I,
one obtains a hybrid automaton shown in Fig. 2b. This au-
tomaton admits chattering runs because on the set charac-
terized by x1 = 0∧x2 ≥ 0 the guards for transitions between
both modes are enabled simultaneously and the system may
thus shuttle back and forth arbitrarily may times without
advancing in (continuous) time. However, if one were to
employ guard conditions of type II, the resulting automaton
(Fig. 3) would be chatter-free.

-4 -2 0 2 4

-4

-2

0

2

4

x1

x
2

(a) Phase portrait.

q1

ẋ = f1(x)
x1 ≤ 0

q2

ẋ = f2(x)
x1 ≥ 0

x1 = 0 ∧ x2 ≥ 0x1 = 0

(b) Chattering automaton.

Figure 2: Chattering in the presence of non-determinism.

q1

ẋ = f1(x)
x1 ≤ 0

q2

ẋ = f2(x)
x1 ≥ 0

x1 = 0 ∧ x2 > 0

x1 = 0 ∧ x2 ≤ 0

Figure 3: Chatter-free automaton.

Since infinite Zeno executions cannot in practice be real-
ized, it is common to consider only the non-Zeno executions
when modelling systems using hybrid automata [22, 11] (this
is also the case with hybrid programs [35]).

We should note that infinite chattering runs are a spe-
cial kind of Zeno behaviour, which some authors distinguish
from the more involved genuine Zeno behaviour (see e.g. [2]).
Chatter-free automata may still suffer from this latter type
of Zeno behaviour. Detecting and eliminating genuine Zeno
behaviour in hybrid automata is highly non-trivial and is
the focus of ongoing research.

5.3 Mythical Modes
A piecewise-smooth system may feature a mode Mi inside

which it is altogether impossible to evolve continuously ac-
cording to its respective system of ODEs ẋ = fi(x). More
precisely, it is possible that Mi ∩ Infi(Mi) = ∅. Inside such
a mode, the (continuous) state of the system remains invari-
ant and may only change by switching into a different mode;
such a mode is sometimes called mythical [30, 31]. For ex-
ample, in a system where the state space is the real line R

that is partitioned into 3 modes x < 0, x = 0 and x > 0
where the dynamics is respectively ẋ = 1, ẋ = 2 and ẋ = 3,
the mode x = 0 is mythical.

q1

ẋ = 1
x ≤ 0

q2

ẋ = 2
x = 0

q3

ẋ = 3
x ≥ 0

x = 0

x = 0

Figure 4: Mythical mode q2.

Following our approach, the mode invariants for the hy-
brid automaton are augmented to be x ≤ 0, x = 0 and
x ≥ 0 respectively, and a transition from x ≤ 0 into x ≥ 0
is possible without ever visiting the mythical mode. In gen-
eral, in hybrid automata constructed using our method (e.g.
Fig. 4 where only possible transitions are depicted with their
guards) it is impossible to transition into mythical modes
with any of the three types of guard conditions.

5.4 Sliding Modes
In control systems literature, it is not uncommon to en-

counter systems of the form

ẋ =

{
f1(x) s(x) > 0 ,
f2(x) s(x) < 0 ,

where s : Rn → R is some differentiable (often polyno-
mial) function. These and similar systems are sometimes
termed variable structure systems (VSS) and have been ap-
plied in discontinuous non-linear control strategies, known
as variable structure control (VSC). A phenomenon known
as sliding motion lies at the heart of an important class
of variable structure control, known as sliding mode con-
trol (SMC), which, broadly speaking, achieves system order
reduction by steering the trajectories of an n-dimensional
system onto an n − 1 dimensional switching hyper-surface
in the system’s state space, defined by s = 0. The so-called
sliding motion taking place on the hyper-surface corresponds
to the infinitely-fast switching between the modes governing
the evolution on either side of the surface [45], i.e. inside
regions where s > 0 and s < 0.

Remark 3. Note however, that the description of the sys-
tem may not explicitly prescribe any dynamics on the switch-
ing surface s = 0 itself.

In practice, sliding motions are often modelled by introduc-
ing a so-called equivalent control [41] on the switching sur-
face; this is achieved by letting

ẋ = fs(x) =
f1(x) + f2(x)

2
+ ueq

f1(x)− f2(x)

2
,

where ueq =
Lf1(s) + Lf2(s)

Lf2(s) − Lf1(s)
, be the sliding dynamics on

the surface s = 0 (e.g. see [32]).
Let us consider a 2-dimensional non-linear system with a

1-dimensional sliding mode that was obtained by applying

an equivalent control. The system is given by:

ẋ = f1(x) ≡

{
ẋ1 = x32 +

3x22
8

+ 3x2
64
− 255

512
,

ẋ2 = −x1
8
− x1x2 ,

x2 > 0 ,

ẋ = f2(x) ≡

{
ẋ1 = −2x32 +

9x22
8

+ 123x2
320
− 303

640
,

ẋ2 = 0 ,
x2 = 0 ,

ẋ = f3(x) ≡

{
ẋ1 = x32 −

3x22
2

+ 3x2
4
− 3

8
,

ẋ2 = x1
2
− x1x2 ,

x2 < 0 .

-4 -2 0 2 4

-4

-2

0

2

4

x1

x
2

(a) Phase portrait.

-4 -2 0 2 4

-4

-2

0

2

4

x1

x
2

(b) Stable and unstable sliding.

Figure 5: Piecewise-smooth system ẋ = F(x) with a sliding
mode at x2 = 0 that is unstable when x1 > 0 (shown in red)
and a stable when x1 < 0 (in green).

Sliding occurs on the set characterized by x2 = 0 and
ẋ = f2(x) is the equivalent control dynamics which steers
the system along the surface x2 = 0 (Fig. 5a). The system
exhibits both stable and unstable sliding behaviour, which
can be observed in the phase portrait, as shown in Fig. 5b.
Roughly speaking, in the neighbourhoods of states where the
sliding mode is stable the vector fields are“pointing towards”
the sliding set, whereas in the neighbourhood of states where
it is unstable the vector fields are “pointing outwards” away
from the set.

For this system, different types of guard conditions lead to
radically different operational models. The resulting hybrid
automata employing guard conditions of type I, II and III
are respectively shown in Fig. 6, Fig. 7 and Fig. 8.

q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2
=

0x2
=

0
∧ x

1
≤

0

x
2 =

0

x
2 =

0 ∧
x
1 ≤

0

x2 = 0 ∧ x1 ≤ 0

x2 = 0 ∧ x1 ≤ 0

Figure 6: Hybrid automaton model with guard conditions
of type I.

q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2
=

0
∧ x

1
≥

0

x2
=

0
∧ x

1
<

0
x
2 =

0 ∧
x1 ≥

0

x
2 =

0 ∧
x
1 <

0

Figure 7: Hybrid automaton model with guard conditions
of type II.

q2

ẋ = f2(x)
x2 = 0

q3

ẋ = f3(x)
x2 ≤ 0

q1

ẋ = f1(x)
x2 ≥ 0

x2 = 0 ∧ x1 > 0 x2 = 0 ∧ x1 > 0

Figure 8: Hybrid automaton model with guard conditions
of type III.

The three automata differ in the way they model non-
determinism in the system. In particular guard conditions
of type III result in the automaton in Fig. 8, which is com-
pletely deterministic and only models the stable sliding tak-
ing place in the system; there is no non-determinism corre-
sponding to unstable sliding in this operational model. In
practice, this behaviour is un-physical because unstable mo-
tions can leave the unstable sliding mode under arbitrarily
small perturbations in the state or the vector field. As such,
this operational model represents a mathematical idealiza-
tion which is of little use when modelling physical systems.
However, if physical considerations are unimportant, the
model is interesting because it has the property that discrete
transitions are taken precisely when they are enabled, in a
way that is analogous to some non-standard urgent/must
semantics for transition guards of hybrid automata.

The hybrid automaton in Fig. 7 models both stable and
unstable sliding and is additionally chatter-free, whereas the
automaton in Fig. 6 admits chattering runs when the contin-
uous state is at the origin. Of all these operational models,
the one employing guard conditions of type II (in Fig. 7) is
perhaps the most physically meaningful and faithful to the
intended behaviour of the system.

6. OUTLOOK AND RELATED WORK
Having automatic means of computing operational mod-

els of systems which can be concisely specified (but whose
operational models require an unreasonable amount of effort
and care to explicitly write down manually) is a significant
enabling factor. In general, computing adequate hybrid au-
tomaton models of systems is highly non-trivial [29]. The
examples used in this paper are very simple and are intended
to highlight differences between the different models; more
interesting examples of PWS lead to automata that are in-
deed quite formidable. We have implemented our HA syn-
thesis algorithm in Mathematica and are able to generate au-

tomata in the format of the verification tool SpaceEx [14].5

The hybrid automata we are able to generate can provide
suitable models for addressing the problem of verification
(e.g. of safety and liveness properties) and benefit from a
large and growing number of software tools developed to
verify or simulate hybrid systems [14, 24, 5, 15, 43]. Verifi-
cation technology for hybrid systems has improved tremen-
dously in the last two decades; however, in much of existing
work there are significant restrictions on the form of hybrid
automata, such as e.g. only allowing linear ODEs to govern
continuous evolution, or only allowing a specific class of sets
(e.g. polytopes) to act as mode invariants for the states of
the automaton. We should note that in this sense the class
of systems considered in this paper is very broad because it
allows for non-linear continuous dynamics and for arbitrary
semi-algebraic sets to act as mode invariants and transition
guards.

It is our hope our techniques will in future be applied to
modelling and verification of properties in systems with engi-
neering applications that employ variable structure control.
We stress, however, that many important questions remain
unresolved. For instance, the difficult task of categorizing
and classifying the possible kinds of operational models (be-
yond the three presented) remains to be addressed. Interest-
ing questions as to which of the many possible types of oper-
ational semantics for PWS that can be obtained through us-
ing techniques described in this paper are “physically mean-
ingful” (and for what phenomena) present many intriguing
avenues for future research.

6.1 Related Work
Lygeros et al. studied existence and uniqueness of exe-

cutions of hybrid automata in [26], giving conditions under
which hybrid automata are deterministic and non-blocking.
We note that there are important differences in definitions,
e.g. the use of semi-open time intervals in [26], such as in

Out(qi) ≡ {x ∈ Rn | ∀ ε. ∃ t ∈ [0, ε). ϕt(x) 6∈Mi},

where Mi = Dom(qi). This differs from definitions used in
this paper, e.g.

¬Infi(Mi) ≡ {x ∈ Rn | ∀ ε. ∃ t ∈ (0, ε). ϕt(x) 6∈Mi}.

Remark 4. Similar notions also exist in the ODE litera-
ture, e.g. “ingress” and “egress” sets used to state and prove
the Ważewski principle ([21, p. 282],[7]).

The work in [26] is also similar in using Lie derivatives of
functions to reason about the transition behaviour; however,
the authors consider a special class of hybrid automata in
which mode invariants can be characterized by sub-level sets
of analytic functions, i.e. σ(x) ≥ 0. The same restriction
was used in the work of Johansson et al. [23] and already
rules out systems in which mode invariants are given by
polytopes. We work under much more general assumptions
where the mode invariants are semi-algebraic sets and work
with their representations directly. Further investigations of
existence and uniqueness of executions of hybrid automata
were reported in [27].

5An implementation is available from http://www.lix.
polytechnique.fr/˜ghorbal/EMSOFT17.

http://www.lix.polytechnique.fr/~ghorbal/EMSOFT17
http://www.lix.polytechnique.fr/~ghorbal/EMSOFT17

7. CONCLUSION
In this paper we presented a methodology for automat-

ically synthesizing hybrid automata from descriptions of
piecewise-smooth polynomial systems, i.e. systems of dis-
continuous ODEs that are polynomial on disjoint semi-
algebraic sets forming a partition of the state space. The
hybrid automata thus obtained provide operational models
of piecewise-smooth systems, which can behave in different
ways, depending on certain choices in formulating the con-
ditions on the transition guards. We have described in Sec-
tions 4.2, 4.3 three alternative choices that can be exercised
in this regard, and which can be thought of as giving differ-
ent operational meaning (i.e. semantics) to the piecewise-
smooth systems. Many more choices are possible and the
task of studying and classifying these possibilities presents
a very interesting direction for further research.

One of our main aims in this paper was to present a case as
to why it is not meaningful to speak of “the hybrid automa-
ton model” of a given piecewise-smooth system without a
precise description of how the said hybrid automaton model
was created. We argue that a synthesis algorithm, such as
that presented in Section 4.2, is needed in order to provide
this description.

We believe that correct modelling of piecewise-smooth sys-
tems is a problem that is of more than just theoretical in-
terest, since systems of this type occur frequently in control
engineering (often in the context of autonomous switching
or sliding mode controllers). Their representation as differ-
ential equations active inside certain designated regions is
deceptively simple and great care needs to be taken when
extracting operational models from these simple representa-
tions. Our work addressed some of the fundamental difficul-
ties inherent in this task.

Acknowledgements.
The authors would like to thank Dr. Gautam Biswas at

Vanderbilt University for a useful discussion of his related
earlier research and extend special thanks to the anonymous
EMSOFT’17 reviewers for their careful reading, valuable
suggestions, and for pointing out some relevant references.

8. REFERENCES
[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H.

Ho. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229. Springer, 1993.

[2] A. D. Ames, A. Abate, and S. Sastry. Sufficient
conditions for the existence of zeno behavior. In
Proceedings of the 44th IEEE Conference on Decision
and Control, pages 696–701, Dec 2005.

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real
Algebraic Geometry (Algorithms and Computation in
Mathematics). Springer, 2 edition, 2006.

[4] B. F. Caviness and J. R. Johnson. Quantifier
Elimination and Cylindrical Algebraic Decomposition.
Springer, 1998.

[5] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Flow*: An analyzer for non-linear hybrid systems. In
Proceedings of the 25th International Conference on
Computer Aided Verification, CAV’13, pages 258–263.
Springer, 2013.

[6] G. E. Collins. Quantifier elimination for real closed

fields by cylindrical algebraic decompostion, volume 33
of Lecture Notes in Computer Science, pages 134–183.
Springer, 1975.

[7] C. C. Conley. Isolated invariant sets and the Morse
index. Conference Board of the Mathematical
Sciences, 1978.

[8] J. Cortés. Discontinuous dynamical systems: A
tutorial on solutions, non-smooth analysis and
stability. IEEE Control Systems, 28(3):36–73, 2008.

[9] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties,
and Algorithms: An Introduction to Computational
Algebraic Geometry and Commutative Algebra.
Springer, 2010.

[10] J. H. Davenport and J. Heintz. Real quantifier
elimination is doubly exponential. J. Symb. Comput.,
5(1-2):29–35, Feb. 1988.

[11] J. M. Davoren and A. Nerode. Logics for hybrid
systems. Proc. IEEE, 88(7):985–1010, 2000.

[12] M. Egerstedt. Behavior based robotics using hybrid
automata. In Proceedings of the Third International
Workshop on Hybrid Systems: Computation and
Control, HSCC ’00, pages 103–116. Springer, 2000.

[13] G. Frehse. An Introduction to Hybrid Automata,
Numerical Simulation and Reachability Analysis,
pages 50–81. Springer, 2015.

[14] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid
systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification, CAV’11,
pages 379–395. Springer, 2011.

[15] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and
A. Platzer. KeYmaera X: An axiomatic tactical
theorem prover for hybrid systems. In CADE-25: 25th
International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings,
volume 9195 of Lecutre Notes in Computer Science.
Springer, 2015.

[16] K. Ghorbal and A. Platzer. Characterizing algebraic
invariants by differential radical invariants. In Tools
and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS
2014. Proceedings, pages 279–294, 2014.

[17] K. Ghorbal, A. Sogokon, and A. Platzer. A hierarchy
of proof rules for checking positive invariance of
algebraic and semi-algebraic sets. Computer
Languages, Systems & Structures, 47:19–43, 2017.

[18] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid
dynamical systems. IEEE Control Systems,
29(2):28–93, 2009.

[19] O. Hájek. Discontinuous differential equations I.
Journal of Differential Equations, 32(2):149 – 170,
1979.

[20] J. K. Hale and J. P. LaSalle. Differential equations:
Linearity vs. nonlinearity. SIAM Review, 5(3):249–272,
July 1963.

[21] P. Hartman. Ordinary Differential Equations. John
Wiley & Sons, Inc., New York, 1964.

[22] T. A. Henzinger. The theory of hybrid automata. In
Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, LICS ’96, pages 278–292.

IEEE Computer Society, 1996.

[23] K. H. Johansson, M. Egerstedt, J. Lygeros, and
S. Sastry. On the regularization of zeno hybrid
automata. Systems & Control Letters, 38(3):141–150,
1999.

[24] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dReach:
δ-reachability analysis for hybrid systems. In Tools
and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS
2015. Proceedings, pages 200–205. Springer, 2015.

[25] J. Liu, N. Zhan, and H. Zhao. Computing
semi-algebraic invariants for polynomial dynamical
systems. In Proceedings of the Ninth ACM
International Conference on Embedded Software,
EMSOFT ’11, pages 97–106. ACM, 2011.

[26] J. Lygeros, K. H. Johansson, S. Sastry, and
M. Egerstedt. On the existence of executions of hybrid
automata. In the 38th IEEE Conference on Decision
and Control, Phoenix, AZ, pages 2249–2254. IEEE,
1999.

[27] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang,
and S. S. Sastry. Dynamical properties of hybrid
automata. IEEE Transactions on Automatic Control,
48(1):2–17, Jan 2003.

[28] B. Mishra. Algorithmic Algebra. Texts and
Monographs in Computer Science. Springer, 1993.

[29] P. J. Mosterman. Mode transition behavior in hybrid
dynamic systems. In S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice, editors, Proc. of the 2003 Winter
Simulation Conference, pages 623–631, Dec. 2003.

[30] P. J. Mosterman and G. Biswas. A theory of
discontinuities in physical system models. Journal of
the Franklin Institute, 335(3):401–439, 1998.

[31] P. J. Mosterman, F. Zhao, and G. Biswas. An
ontology for transitions in physical dynamic systems.
In Proceedings of the Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference,
AAAI 98, IAAI 98, July 26-30, 1998, Madison,
Wisconsin, USA., pages 219–224, 1998.

[32] E. M. Navarro-López and R. Carter. Hybrid
automata: an insight into the discrete abstraction of
discontinuous systems. International Journal of
Systems Science, 42(11):1883–1898, 2011.

[33] D. Novikov and S. Yakovenko. Trajectories of
polynomial vector fields and ascending chains of
polynomial ideals. In Annales de l’institut Fourier,
volume 49, pages 563–609, 1999.

[34] A. Platzer. Differential dynamic logic for hybrid
systems. J. Autom. Reas., 41(2):143–189, 2008.

[35] A. Platzer. Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics. Springer,
2010.

[36] R. G. Sanfelice, R. Goebel, and A. R. Teel.
Generalized solutions to hybrid dynamical systems.
ESAIM: Control, Optimisation and Calculus of
Variations, 14:699–724, 10 2008.

[37] A. Seidenberg. A new decision method for elementary
algebra. Annals of Mathematics, pages 365–374, 1954.

[38] A. Tarski. A decision method for elementary algebra
and geometry. Bulletin of the American Mathematical

Society, 59, 1951.

[39] G. Teschl. Ordinary Differential Equations and
Dynamical Systems, volume 140 of Graduate Studies in
Mathematics. American Mathematical Society, 2012.

[40] A. Tiwari. Abstractions for hybrid systems. Formal
Methods in System Design, 32(1):57–83, 2008.

[41] V. I. Utkin. Sliding Modes in Control and
Optimization. Communications and Control
Engineering Series. Springer, 1992.

[42] A. J. Van Der Schaft and H. Schumacher. An
introduction to hybrid dynamical systems, volume 251
of Lecture Notes in Control and Information Sciences.
Springer, 2000.

[43] S. Wang, N. Zhan, and L. Zou. An Improved HHL
Prover: An Interactive Theorem Prover for Hybrid
Systems, pages 382–399. Springer, 2015.

[44] H. S. Witsenhausen. A class of hybrid-state
continuous-time dynamic systems. IEEE Transactions
on Automatic Control, 11(2):161–167, Apr 1966.

[45] F. Zhao and V. I. Utkin. Adaptive simulation and
control of variable-structure control systems in sliding
regimes. Automatica, 32(7):1037 – 1042, 1996.

APPENDIX
A. COMPUTING “IN SETS” EXACTLY

To give an idea of how Inf(S) is computed exactly, con-
sider a set S which is given by p ≤ 0, where p is some poly-
nomial function in the state variables x1, . . . , xn with real
coefficients. Firstly, note that each point x in the interior
of S, i.e. satisfying p < 0 necessarily lies inside Inf(p ≤ 0)
because motion within the interior is always possible within
some open neighbourhood. The set p < 0 thus provides the
first under-approximation of the set Inf(p ≤ 0). We now re-
fine this under-approximation by adding some of the states
satisfying p = 0, for which a sufficient (but not necessary)
condition for membership in Inf(p ≤ 0) is that of satisfy-
ing the inequality Lf(p) < 0. This is intuitive because the
rate of change of p at such a state is negative and therefore
the system will immediately evolve into the set satisfying
p < 0. However, for states satisfying p = 0 and Lf(p) = 0,
one needs to check that the second-order Lie derivative is
negative (i.e. L2

f (p) < 0) in order to conclude their member-
ship in Inf(p ≤ 0), and so on for higher-order Lie derivatives.
Intuitively, these cases correspond to situations where “the
velocity is zero, but the acceleration is negative”, etc., which
likewise ensures that the system cannot evolve into a state
satisfying p > 0 (i.e. the complement of p ≤ 0) immedi-
ately afterwards. The set Inf(p ≤ 0) is then constructed as
follows:

Inf(p ≤ 0) ≡ p < 0

∨ (p = 0 ∧ Lf(p) < 0)

∨ (p = 0 ∧ Lf(p) = 0 ∧ L2
f (p) < 0)

...

∨ (p = 0 ∧ Lf(p) = 0 ∧ · · · ∧ Lkf (p) ≤ 0)

The fact that the number k is finite and can be computed
is a consequence of Hilbert’s basis theorem and the ascend-
ing chain property of Noetherian rings (see e.g. [28, Sec.
2.3.2]). These fundamental results guarantee that one is

always able to find a k ∈ N such that the ideal member-
ship LKf (p) ∈ 〈p,Lf(p), . . . ,L

k
f (p)〉 6 holds for all K ≥ k.

This property is equivalent to the statement that for each
K ≥ k the following equality holds: LKf (p) = α0p +

α1Lf(p)+· · ·+αkLkf (p), where the coefficients α0, α1, . . . , αk
are some polynomials in the ring R[x1, . . . , xn]. Thus, when-
ever p = Lf(p) = · · · = Lkf (p) = 0 holds, one necessarily has

LKf (p) = 0 for all K ≥ 0, and thus it is impossible to grow
the under-approximation of Inf(p ≤ 0) by adding any more
disjuncts of the form p = 0 ∧ Lf(p) = 0 ∧ · · · ∧ Lkf (p) =

0 ∧ · · · ∧ LKf (p) < 0 for any K > k and the construction is
therefore complete. In practice, the number k is computed
using Gröbner bases (e.g. see [9, Chap. 2]).

B. ENTER, EXIT AND BOUNCE SETS
Consider a semi-algebraic set described by the formula

S ≡ x21 + (x2 + 3)2 < 6 ∧ −3 ≤ x2 and let the dynamics of
the system, ẋ = f(x), be given by the system of polynomial
ODEs: ẋ1 = x1x

2
2 − 1, ẋ2 = −x1. Fig. 9a shows the set S

-4 -2 0 2 4
-4

-2

0

2

4

x1

x
2

(a) Semi-algebraic set S ⊂ R2

-4 -2 0 2 4
-4

-2

0

2

4

x1

x
2

(b) Enterf(S) and Exitf(S)

Figure 9: Semi-algebraic set, along with its “entry” states
(in green) and “exit” states (in red).

along with some of the trajectories of the system. The set
of “entering states”, given by

Enterf(S) =
(
x2 + 3 = 0 ∧ x1 < 0 ∧ x21 + x22 + 6x2 + 3 < 0

)
∨ (x2 + 3 > 0 ∧ x21 + x22 + 6x2 + 3 = 0 ∧ x21x22 < x1 (x2 + 4)),

is shown in green in Fig. 9b, and

Exitf(S) =
(

0 < x1 ≤
√

6 ∧ x2 + 3 = 0
)
∨
(
x2 + 3 > 0

∧ x21 + x2 (x2 + 6) + 3 = 0 ∧ x21x22 > x1 (x2 + 4)
)

is shown in red. Note that these two sets need not necessarily
include all the points on the boundary of S. The black
points in Fig. 9b represent states on the boundary which are
neither in Enterf(S) nor Exitf(S). In particular, Bouncef(S)
includes the point at the centre of the semi-circle, i.e. x1 =
0∧x2 = −3, whereas the remaining three points in the figure
belong to Bouncef(¬S).

6i.e. LKf (p) is in the ideal generated by the finite set of

polynomials {p,Lf(p), . . . ,L
k
f (p)}

	Introduction
	Contributions

	Mathematical preliminaries
	Continuous systems and vector fields
	Piecewise-smooth vector fields
	Hybrid automata as operational models
	Semantics of hybrid automata

	Problem Overview
	Operational Models
	Fundamental Definitions
	Generating Hybrid Automata
	Discrete Transition Behaviour
	Computability

	Dynamic Properties of Operational Models
	Non-determinism
	Chattering Runs
	Mythical Modes
	Sliding Modes

	Outlook and Related Work
	Related Work

	Conclusion
	References
	Computing ``In sets'' exactly
	Enter, Exit and Bounce sets

