
Verifying safety and persistence properties of hybrid
systems using flowpipes and continuous invariants ?

Andrew Sogokon1, Paul B. Jackson2, and Taylor T. Johnson1

1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
{andrew.sogokon|taylor.johnson}@vanderbilt.edu

2 Laboratory for Foundations of Computer Science, University of Edinburgh, Scotland, UK
Paul.Jackson@ed.ac.uk

Abstract We propose a method for verifying persistence of nonlinear hybrid sys-
tems. Given some system and an initial set of states, the method can guarantee
that system trajectories always eventually evolve into some specified target sub-
set of the states of one of the discrete modes of the system, and always remain
within this target region. The method also computes a time-bound within which
the target region is always reached. The approach combines flow-pipe compu-
tation with deductive reasoning about invariants and is more general than each
technique alone. We illustrate the method with a case study concerning showing
that potentially destructive stick-slip oscillations of an oil-well drill eventually
die away for a certain choice of drill control parameters. The case study demon-
strates how just using flow-pipes or just reasoning about invariants alone can be
insufficient. The case study also nicely shows the richness of systems that the
method can handle: the case study features a mode with non-polynomial (nonlin-
ear) ODEs and we manage to prove the persistence property with the aid of an
automatic prover specifically designed for handling transcendental functions.

1 Introduction
Hybrid systems combine discrete and continuous behaviour and provide a very gen-
eral framework for modelling and analyzing the behaviour of systems such as those
implemented in modern embedded control software. Although a number of tools and
methods have been developed for verifying properties of hybrid systems, most are
geared towards proving bounded-time safety properties, often employing set reachabil-
ity computations based on constructing over-approximating enclosures of the reachable
states of ordinary differential equations (e.g. [7,14,13,21]). Methods capable of proving
unbounded-time safety properties often rely (explicitly or otherwise) on constructing
continuous invariants (e.g. [42,25], and referred to in short as invariants). Such invari-
ants may be thought of as a generalization of positively invariant sets (see e.g. [5]) and
which are analogous to inductive invariants used in computer science to reason about
the correctness of discrete programs using Hoare logic.
? This material is based upon work supported by the UK Engineering and Physical Sciences

Research Council under grants EPSRC EP/I010335/1 and EP/J001058/1, the National Science
Foundation (NSF) under grant numbers CNS 1464311 and CCF 1527398, the Air Force Re-
search Laboratory (AFRL) through contract number FA8750-15-1-0105, and the Air Force
Office of Scientific Research (AFOSR) under contract number FA9550-15-1-0258.

2 A. Sogokon, P. B. Jackson, T. T. Johnson

We argue in this paper that a combined approach employing bounded time reach-
ability analysis and reasoning about invariants can be effective in proving persistence
and safety properties in non-polynomial (nonlinear) hybrid systems. We illustrate the
combined approach using a detailed case study with non-polynomial ODEs for which
neither approach individually was sufficient to establish the desired safety and persis-
tence properties.

Methods for bounded time safety verification cannot in general be applied to prove
safety for all time and their accuracy tends to degrade for large time bounds, especially
for nonlinear systems. Verification using invariants, while a powerful technique that can
prove strong properties about nonlinear systems, relies on the ability to find invariants
that are sufficient for proving the unbounded time safety property. In practice, many
invariants for the system can be found which fall short of this requirement, often for the
simple reason that they do not include all the initial states of the system. We show how
a combined approach employing both verification methods can, in some cases, address
these limitations.

Contributions.

In this paper we (I) show that bounded time safety verification based on flowpipe con-
struction can be naturally combined with invariants to verify persistence and unbounded
time safety properties, addressing some of the limitations of each verification method
when considered in isolation. (II) To illustrate the approach, we consider a simplified
torsional model of a conventional oil well drill string that has been the subject of nu-
merous studies by Navarro-López et al. [34]. (III) We discuss some of the challenges
that currently stand in the way of fully automatic verification using this approach. Ad-
ditionally, we provide a readable overview of the methods employed in the verification
process and the obstacles that present themselves when these methods are applied in
practice.

2 Safety and Persistence for Hybrid Automata
2.1 Preliminaries

A number of formalisms exist for specifying hybrid systems. The most popular frame-
work at present is that of hybrid automata [3,19], which are essentially discrete tran-
sition systems in which each discrete state represents an operating mode inside which
the system evolves continuously according to an ODE under some evolution constraint.
Additionally, transition guards and reset maps are used to specify the discrete transition
behaviour (i.e. switching) between the operating modes. A sketch of the syntax and
semantics of hybrid automata is as follows.

Definition 1 (Hybrid automaton [26]). Formally, a hybrid automaton is given by
(Q,V ar,f , Init, Inv, T,G,R), where

• Q = {q0, q1, . . . , qk} is a finite set of discrete states (modes),
• V ar = {x1, x2, . . . , xn} is a finite set of continuous variables,
• f : Q × Rn → Rn gives the vector field defining continuous evolution inside each

mode,
• Init ⊂ Q× Rn is the set of initial states,

Verifying safety and persistence properties of hybrid systems 3

• Inv : Q → 2R
n

gives the mode invariants constraining evolution for every discrete
state,

• T ⊆ Q×Q is the transition relation,
• G : T → 2R

n

gives the guard conditions for enabling transitions,
• R : T → 2R

n×Rn gives the reset map.

A hybrid state of the automaton is of the form (q,x) ∈ Q×Rn. A hybrid time trajectory
is a sequence (which may be finite or infinite) of intervals τ = {Ii}Ni=0, for which
Ii = [τi, τ

′
i] for all i < N and τi ≤ τ ′i = τi+1 for all i. If the sequence is finite, then either

IN = [τN , τ
′
N] or IN = [τN , τ

′
N). Intuitively, one may think of τi as the times at which

discrete transitions occur. An execution (or a run or trajectory) of a hybrid automaton
defined to be (τ, q, ϕit(x)), where τ is a hybrid time trajectory, q : 〈τ〉 → Q (where 〈τ〉
is defined to be the set {0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise) and ϕit(x)

is a collection of diffeomorphisms ϕit(x) : Ii → Rn such that (q(0), ϕ0
0(x)) ∈ Init , for

all t ∈ [τi, τ
′
i) ẋ = f(q(i), ϕit(x)) and ϕit(x) ∈ Inv(i). For all i ∈ 〈τ〉 \ {N} it is also

required that transitions respect the guards and reset maps, i.e. e = (q(i), q(i+ 1)) ∈ T ,
ϕiτ ′i

(x) ∈ G(e) and (ϕiτ ′i
(x), ϕi+1

τi+1
(x)) ∈ R(e).

We consider MTL3 formulas satisfied by trajectories. The satisfaction relation is of
form ρ |=p φ, read as “trajectory ρ at position p satisfies temporal logic formula φ”,
where positions on a trajectory are identified by pairs of form (i, t) where i ≤ N and
time t ∈ It. We use the MTL modality 2Iφ which states that formula φ always holds
in time interval I in the future. Formally, this can be defined as ρ |=p 2Iφ ≡ ∀p′ ≥
p s.t. (p′.2− p.2) ∈ I. ρ |=p

′
φ, where (i′, t′) ≥ (i, t) ≡ i′ > i∨ (i′ = i∧ t′ ≥ t). Similarly

we can define the modality 3Iφ which states that formula φ eventually holds at some
time in the time interval I in the future. An MTL formula is valid for a given hybrid
automaton if it is satisfied by all trajectories of that automaton starting at position (0, 0).
For clarity when writing MTL formulas, we assume trajectories are not restricted to
start in Init states and instead introduce Init predicates into the formulas when we want
restrictions.

Alternative formalisms for hybrid systems, such as hybrid programs [41], enjoy the
property of having a compositional semantics and can be used to verify properties of
systems by verifying properties of their parts in a theorem prover [44,15]. Other formal
modelling frameworks for hybrid systems, such as Hybrid CSP [24], have also found
application in theorem provers [60,62].

2.2 Bounded Time Safety and Eventuality

The bounded-time safety verification problem (with some finite time bound t > 0) is
concerned with establishing that given an initial set of states Init ⊆ Q × Rn and a set
of safe states Safe ⊆ Q × Rn, the state of the system may not leave Safe within time t
along any valid trajectory τ of the system. In the absence of closed-form solutions to
the ODEs, this property may be established by verified integration, i.e. by computing
successive over-approximating enclosures (known as flowpipes) of the reachable states
in discrete time steps. Bounded-time reachability analysis can be extended to full hy-
brid systems by also computing/over-approximating the discrete reachable states (up to
some finite bound on the number of discrete transitions).

3 Metric Temporal Logic; see e.g. [22].

4 A. Sogokon, P. B. Jackson, T. T. Johnson

A number of bounded-time verification tools for hybrid systems have been devel-
oped based on verified integration using interval enclosures. For instance, iSAT-ODE, a
verification tool for hybrid systems developed by Eggers et al. [13] relies on the verified
integration tool VNODE-LP by Nedialkov [37] for computing the enclosures. Other ex-
amples include dReach, a reachability analysis tool for hybrid systems developed by
Kong et al. [21], which uses the CAPD library [1]. Over-approximating enclosures can
in practice be very precise for small time horizons, but tend to become conservative
when the time bound is large (due to the so-called wrapping effect, which is a problem
caused by the successive build-up of over-approximation errors that arises in interval-
based methods; see e.g. [38].) An alternative verified integration method using Taylor
models was introduced by Makino and Berz (see [4,38]) and can address some of these
drawbacks, often providing tighter enclosures of the reachable set. Implementations
of the method have been reported in COSY INFINITY, a scientific computing tool by
Makino and Berz [29]; VSPODE, a tool for computing validated solutions to parametric
ODEs by Lin and Stadtherr [23]; and in Flow∗, a bounded-time verification for hybrid
systems developed by Chen et al. [7].

Because flowpipes provide an over-approximation of the reachable states at a given
time, verified integration using flowpipes can also be used to reason about liveness
properties such as eventuality, i.e. when a system is guaranteed to eventually enter some
target set having started off at some point in an initial set. The bounded-time safety and
eventuality properties may be more concisely expressed by using MTL notation, i.e. by
writing Init→ 2[0,t] Safe, and Init→ 3[0,t] Target, where Init describes the initial set of
states, Safe ⊆ Q × Rn is the set of safe states and Target ⊆ Q × Rn is the target region
which is to be eventually attained.

Remark 2. The bounded time eventuality properties we consider in this paper are more
restrictive than the general (unbounded time) case. For instance, consider a continuous
2-dimensional system governed by ẋ1 = x2, ẋ2 = 0 and confined to evolve in the region
where x2 > 0. If one starts this system inside a state where x1 = 0, it will eventually
evolve into a state where x1 = 1 by following the solution, however one may not put a
finite bound on the time for this to happen. Thus, while x1 = 0→ 3[0,∞) x1 = 1 is true
for this system the bounded time eventuality property x1 = 0 → 3[0,t] x1 = 1, will not
hold for any finite t > 0.

2.3 Unbounded Time Safety

A safety property for unbounded time may be more concisely expressed using an MTL
formula:

Init→ 2[0,∞) Safe.

A proof of such a safety assertion is most commonly achieved by finding an appropri-
ate invariant, I ⊆ Q × Rn, which contains no unsafe states (i.e. I ⊆ Safe) and such
that the state of the system may not escape from I into an unsafe state along any valid
trajectory of the system. Invariance is a special kind of safety assertion and may be
written as I → 2[0,∞) I. A number of techniques have been developed for proving in-
variance properties for continuous systems without the need to compute solutions to the
ODEs [49,41,58,25,17,53].

Verifying safety and persistence properties of hybrid systems 5

2.4 Combining Unbounded Time Safety with Eventuality to Prove Persistence

In linear temporal logic, a persistence property states that a formula is ‘eventually al-
ways’ true. For instance, using persistence one may express the property that a system
starting in any initial state always eventually reaches some target set and then always
stays within this set. Using MTL notation, we can write this as:

Init→ 3[0,∞) 2[0,∞) Target.

Persistence properties generalize the concept of stability. With stability one is concerned
with showing that the state of a system always converges to some particular equilibrium
point. With persistence, one only requires that the system state eventually becomes
always trapped within some set of states.

In this paper we are concerned with a slightly stronger form of persistence, where
one ensures that the target set is always reached within some specified time t:

Init→ 3[0,t] 2[0,∞) Target.

We observe that a way of proving this is to find a set I ⊆ Target such that:

1. Init→ 3[0,t] I holds, and
2. I is an invariant for the system.

This fact can be stated more formally as a rule of inference:

(Persistence)
Init→ 3[0,t] I I → 2[0,∞) I I → Target

Init→ 3[0,t] 2[0,∞) Target
.

Previous Sections 2.2 and 2.3 respectively surveyed how the eventuality premise Init→
3[0,t] I and invariant premise I → 2[0,∞) I can be established by a variety of automated
techniques. In Section 5 we explore automation challenges further and remark on on-
going work addressing how to automatically generate suitable invariants I.

2.5 Using Persistence to Prove Safety

Finding appropriate invariants to prove unbounded time safety as explained above in
Section 2.3 can in practice be very difficult. It might be the case that invariants I ⊆ Safe

for the system can be found, but also ensuring that Init ⊆ I is infeasible. Nevertheless it
might be the case that one of these invariants I is always eventually reached by trajec-
tories starting in Init and all those trajectories are contained within Safe. In such cases,
Safe is indeed a safety property of the system when starting from any point in Init. More
precisely, if one can find an invariant I as explained above in Section 2.4 to show the
persistence property: Init → 3[0,t] 2[0,∞) Safe, and further one can show for the same
time bound t that: Init → 2[0,t] Safe, then one has: Init → 2[0,∞) Safe. As a result, one
may potentially utilize invariants that were by themselves insufficient for proving the
safety property.

Remark 3. The problem of showing that a state satisfying 2[0,∞) Safe is reached in finite
time t, while ensuring that the formula 2[0,t] Safe also holds (i.e. states satisfying ¬Safe
are avoided up to time t) is sometimes called a reach-avoid problem [61].

6 A. Sogokon, P. B. Jackson, T. T. Johnson

Even if one’s goal is to establish bounded-time rather than unbounded-time safety
properties, this inference scheme could still be of use, as it could significantly reduce
the time bound t needed for bounded time reachability analysis. In practice, successive
over-approximation of the reachable states using flowpipes tends to become conserva-
tive for large values of t. In highly non-linear systems one can realistically expect to
compute flowpipes only for very modest time bounds (e.g. in chaotic systems flowpipes
are guaranteed to ‘blow up’, but invariants may still sometimes be found). Instead, it
may in some cases be possible to prove the safety property by computing flowpipes up
to some small time bound, after which the system can be shown to be inside an invariant
that implies the safety property for all times thereafter.

3 An example persistence verification problem

Stick-slip oscillations are commonly encountered in mechanical engineering in the con-
text of modelling the effects of dynamic friction. Informally, the phenomenon manifests
itself in the system becoming “stuck” and “unstuck” repeatedly, which results in un-
steady “jerky” motions. In engineering practice, stick-slip oscillations can often degrade
performance and cause failures when operating expensive machinery [36]. Although the
problem of demonstrating absence of stick-slip oscillations in a system is primarily mo-
tivated by safety considerations, it would be misleading to call this a safety verification
problem. Instead, the problem may broadly be described as that of demonstrating that
the system (in finite time) enters a state in which no stick-slip motion is possible and
remains there indefinitely. Using MTL one may write:

Init→ 3[0,t] 2[0,∞) Steady,

where Steady describes the states in which harmful oscillations cannot occur. The for-
mula may informally be read as saying that “from any initial configuration, the system
will eventually evolve within time t into a state region where it is always steady”.

As an example of a system in which eventual absence of stick-slip oscillations is
important, we consider a well-studied [34] model of a simplified conventional oil well
drill string. The system can be characterized in terms of the following variables: ϕr,
the angular displacement of the top rotary system; ϕb, the angular displacement of the
drilling bit; ϕ̇r, the angular velocity of the top rotary system; and ϕ̇b, the angular velocity
of the drilling bit. The continuous state of the system x(t) ∈ R3 can be described in
terms of these variables, i.e. x(t) = (ϕ̇r, ϕr − ϕb, ϕ̇b)T . The system has two control
parameters: Wob giving the weight applied on the drilling bit, and u = Tm giving the
surface motor torque. The dynamics is governed a non-linear system of ODEs ẋ = f(x),
given by:

ẋ1 =
1

Jr

(
− (ct + cr)x1 − ktx2 + ctx3 + u

)
, (1)

ẋ2 = x1 − x3, (2)

ẋ3 =
1

Jb

(
ctx1 + ktx2 − (ct + cb)x3 − Tfb(x3)

)
. (3)

Verifying safety and persistence properties of hybrid systems 7

The term Tfb(x3) denotes the friction modelling the bit-rock contact and is responsible
for the non-polynomial non-linearity. It is given by

WobRb
(
µcb + (µsb − µcb)e

− γb
νf
|x3|

)
sgn(x3),

where sgn(x3) =
x3
|x3|

if x3 6= 0 and sgn(x3) ∈ [−1, 1] if x3 = 0. Constants used in the
model [34] are as follows: cb = 50Nms/rad, kt = 861.5336 Nm/rad, Jr = 2212 kgm2,
Jb = 471.9698 kgm2, Rb = 0.155575m, ct = 172.3067 Nms/rad, cr = 425Nms/rad,
µcb = 0.5, µsb = 0.8, γb = 0.9, νf = 1 rad/s. Even though at first glance the system
looks like a plain continuous system with a single set of differential equations, it is
effectively a hybrid system with at least 3 modes, where the drilling bit is: “rotating
forward” (x3 > 0), “stopped” (x3 = 0), and “rotating backward” (x3 < 0). A sub-mode
of the stopped mode models when the drill bit is stuck. In this sub-mode, the torque
components on the drill bit due to ct, cb and kt are insufficient to overcome the static
friction WobRbµcb , and sgn(x3) is further constrained so as to ensure ẋ3 = 0.

Once the drill is in operation, so-called stick-slip oscillations can cause damage
when the bit repeatedly becomes stuck and unstuck due to friction in the bottom hole
assembly. In the model this behaviour would correspond to the system entering a state
where x3 = 0 repeatedly. The objective is to verify the eventual absence of stick-slip
oscillations in the system initialised at the origin (i.e. at rest) for some given choice of
the control parameters Wob and u. Previous work by Navarro-López and Carter [34] ex-
plored modelling the simplified model of the drill as a hybrid automaton and simulated
the resulting models in Stateflow and Modelica.

0
Time (s)

0

Bit angular velocity (rad/s)

(a) Stick-slip motion (undesirable)

0
Time (s)

0

Bit angular velocity (rad/s)

(b) Stabilization (desired behaviour)

Figure 1: Simulations can exhibit stabilization with positive bit angular velocity and
stick-slip bit motion.

Simulations, such as those obtained in [34], using different models and control pa-
rameters for the drill can suggest stick-slip oscillations or their absence (illustrated in
Fig. 1) in a particular model, however the task of verifying their eventual absence can-
not be adequately addressed with simulation alone. In practice however, simulation is
incredibly useful in providing some degree of confidence in the overall result, which is
very important to know before attempting verification.

A simulation of the system with a concrete choice for the control parameters Wob =

50, 000 N and u = 6, 000 Nm, shown as a trajectory in the 3-dimensional state space
in Fig 3a, suggests that the system does not exhibit stick-slip oscillations, because the

8 A. Sogokon, P. B. Jackson, T. T. Johnson

trajectory is observed to start at the origin, escape the surface (x3 = 0)4 and stabilize
around a point where the angular velocity of the drilling bit is positive (x3 > 0).

4 Verifying Persistence
The property of interest, i.e. the eventual absence of stick-slip oscillation that we ob-
serve in the simulation, may be phrased as the following formula in metric temporal
logic: x1 = 0∧x2 = 0∧x3 = 0→ 3[0,t] 2[0,∞) x3 > 0, which informally asserts that the
system initialised at the origin will eventually (diamond modality) enter a state where it
is always (box modality) the case that x3 > 0. In the following sections we describe a
method for proving this assertion. Following our approach, we break the problem down
into the following two sub-problems:

1. Finding an appropriate invariant I in which the property 2[0,t] x3 > 0 holds. For
this we employ continuous/positive invariants, discussed in the next section.

2. Proving that the system reaches a state in the set I in finite time when initialised at
the origin, i.e. x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] I. 5

4.1 Continuous Invariant

Finding continuous invariants that are sufficient to guarantee a given property is in prac-
tice remarkably difficult. Methods for automatic continuous invariant generation have
been reported by numerous authors [49,59,18,53,52,25,63,16,30,54], but in practice of-
ten result in “coarse” invariants that cannot be used to prove the property of interest, or
require an unreasonable amount of time due to their reliance on expensive real quantifier
elimination algorithms.

Stability analysis (involving a linearisation; see [56] for details) can be used to sug-
gest a polynomial function V : Rn → R, given by

V (x) = 50599.6− 14235.7x1 + 1234.22x21 − 4351.43x2 + 342.329x1x2

+ 288.032x22 − 3865.81x3 + 367.657x1x3 + 18.2594x2x3 + 241.37x23,

for which we can reasonably conjecture that V (x) ≤ 1400 defines a positively invariant
set under the flow of our non-linear system. Geometrically, this represents an ellipsoid
that lies above the surface defined by x3 = 0 in the state space (see Fig. 3b). In order to
prove the invariance property, it is sufficient to show that the following holds:6

∀ x ∈ R3. V (x) = 1400→ ∇V · f(x) < 0. (4)

Unfortunately, in the presence of non-polynomial terms 7 a first order sentence will in
general not belong to a decidable theory [51], although there has recently been progress
in broadening the scope of the popular CAD algorithm [9] for real quantifier elimination
to work with restricted classes of non-polynomial problems [57].

4 The system exhibits sliding behaviour on a portion of this surface known as the sliding set.
See [34].

5 Files for the case study are available online. http://www.verivital.com/nfm2017
6 Here∇ denotes the gradient of V , i.e. the vector of partial derivatives (∂V

∂x1
, . . . , ∂V

∂xn
).

7 E.g. those featured in the right-hand side of the ODE, i.e. f(x).

http://www.verivital.com/nfm2017

Verifying safety and persistence properties of hybrid systems 9

In practice, this conjecture is easily proved in under 5 seconds using MetiTarski, an
automatic theorem prover, developed by L.C. Paulson and co-workers at the University
of Cambridge, designed specifically for proving universally quantified first order con-
jectures featuring transcendental functions (such as sin,cos, ln, exp, etc.) The interested
reader may find more details about the MetiTarski system in [2,40].

Remark 4. Although Wolfram’s Mathematica 10 computer algebra system also pro-
vides some functionality for proving first-order conjectures featuring non-polynomial
expressions using its Reduce[] function, we were unable (on our system8) to prove
conjecture (4) this way after over an hour of computation, after which the Mathematica
kernel crashed.

The automatic proof of conjecture (4) obtained using MetiTarski (provided we trust
the system) establishes that V (x) ≤ 1400 defines a positively invariant set, and thus we
are guaranteed that solutions initialised inside this set remain there at all future times.
In order to be certain that no outgoing discrete transitions of the hybrid system are
possible when the system is evolving inside V (x) ≤ 1400, we further require a proof of
the following conjecture featuring only polynomial terms:

∀ x ∈ R3. V (x) ≤ 1400→ x3 > 0. (5)

An automatic proof of this conjecture may be obtained using an implementation of a
decision procedure for first-order real arithmetic.

4.2 Verified Integration

In order to show that the system does indeed enter the positively invariant ellipsoid
V (x) ≤ 1400 in finite time, it is not sufficient to observe this in a simulation (as in
Fig. 3b), which is why we use a tool employing verified integration based on Taylor
models. Flow∗ (implemented by Chen et al. [7]) is a bounded-time safety verification
tool for hybrid systems that computes Taylor models to analyze continuous reachability.
The tool works by computing successive over-approximations (flowpipes) of the reach-
able set of the system, which are internally represented using Taylor models (but which
may in turn be over-approximated by a bounding hyper-box and easily rendered).

Fig. 2a shows the bounding boxes of solution enclosures computed from the point
initial condition at the origin using Flow∗ with adaptive time steps and Taylor models of
order 13, a time bound of 12.7 and the same control parameters used in the simulation
(i.e. u = 6, 000 Nm, Wob = 50, 000 N). We observe that once solutions escape to the
region where x3 > 0, they maintain a positive x3 component for the duration of the time
bound.

The last flowpipe computed by Flow∗ for this problem can be bounded inside the
hyper-rectangle BoundBox characterized by the formula

BoundBox ≡ 39

10
≤ x1 ≤ 4 ∧ 51

10
≤ x2 ≤

26

5
∧ 7

2
≤ x3 ≤

37

10
.

Once more, using a decision procedure for real arithmetic, we can check that the fol-
lowing sentence is true:

∀ x ∈ R3. BoundBox→ V (x) ≤ 1400.

8 Intel i5-2520M CPU @ 2.50GHz, 4GB RAM, running Arch Linux kernel 4.2.5-1.

10 A. Sogokon, P. B. Jackson, T. T. Johnson

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
3

x1

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

x
3

x2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
2

x1

(a) Verified integration up to time t = 12.7
from a point initial condition at the origin.

 0

 1

 2

 3

 4

 5

 6

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x
3

x1

 0

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4 5 6 7 8 9

x
3

x2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x
2

x1

(b) Verified integration up to time t = 12.2
from an interval initial condition.

Figure 2: Verified integration using Flow∗.

If we are able to establish the following facts:

1. I → 2[0,∞) I (I is a continuous invariant),
2. I → Steady (inside I, there are no harmful oscillations), and
3. Init→ 3[0,t] I (the system enters the region I in finite time),

then we can conclude that Init → 3[0,t] 2[0,∞) Steady is also true and the system does
not exhibit harmful stick-slip oscillations when started inside Init. By taking Init to
be the origin x1 = 0 ∧ x2 = 0 ∧ x3 = 0, I to be the positively invariant sub-level set
V (x) ≤ 1400 and Steady to be x3 > 0, we are able to conclude the temporal property:

x1 = 0 ∧ x2 = 0 ∧ x3 = 0→ 3[0,t] 2[t,∞) x3 > 0.

Verifying safety and persistence properties of hybrid systems 11

Verified integration using Taylor models also allows us to consider sets of possible
initial conditions, rather than initial points (illustrated in Fig. 2b). This is useful when
there is uncertainty about the system’s initial configuration; however, in practice this
comes with a significant performance overhead for verified integration.

(a) Simulation showing stabilization with posi-
tive bit angular velocity.

(b) Simulation showing eventual entry into an
ellipsoidal invariant.

Figure 3: Simulation of the hybrid system initialised at the origin with Wob = 50, 000 N
and u = 6000 Nm. The trajectory is contained by the flowpipes shown in Fig. 2a and is
observed to enter the positively invariant ellipsoid V (x) ≤ 1400, illustrating the persis-
tence property of eventual absence of stick-slip oscillations.

5 Outlook and Challenges to Automation
Correctness of reachability analysis tools based on verified integration is a soundness
critical to the overall verification approach, which makes for a strong case in favour of
using formally verified implementations. At present few are available, e.g. see recent
work by Immler [20] which presented a formally verified continuous reachability al-
gorithm based on adaptive Runge-Kutta methods. Verified implementations of Taylor
model-based reachability analysis algorithms for continuous and hybrid systems would
clearly be very valuable. One alternative to over-approximating reachable sets of con-
tinuous systems using flowpipes is based on simulating the system using a finite set of
sampling trajectories and employs sensitivity analysis to address the coverage problem.
This technique was explored by Donzé and Maler in [10]. A similar approach employ-
ing matrix measures has more recently been studied by Maidens and Arcak [28,27].

As an alternative to using verified integration, a number of deductive methods
are available for proving eventuality properties in continuous and hybrid systems
(e.g. [42,55]). These approaches can be much more powerful since they allow one to
work with more general classes of initial and target regions that are necessarily out of
scope for methods based on verified integration (e.g. they can work with initial sets that
are unbounded, disconnected, etc.) Making effective use of the deductive verification
tools currently in existence typically requires significant input and expertise on part of
the user (finding the right invariants being one of the major stumbling blocks in prac-
tice), in stark contrast to the near-complete level of automation offered by tools based
on verified integration. Methods for automatic continuous invariant generation are cru-

12 A. Sogokon, P. B. Jackson, T. T. Johnson

cial to the mechanization of the overall verification approach. Progress on this problem
would be hugely enabling for non-experts and specialists alike, as it would relieve them
from the task of manually constructing appropriate invariants, which often requires in-
tuition and expertise. Work in this area is ongoing (see e.g. [43,25,54]). Indeed, progress
on this problem is also crucial to providing a greater level of automation in deductive
verification tools.

6 Related Work
Combining elements of qualitative and quantitative reasoning9 to study the behaviour
of dynamical systems has previously been explored in the case of planar systems by
Nishida et al. [39]. The idea of combining bounded-time reachability analysis with
qualitative analysis in the form of discrete abstraction was investigated by Clarke et al.
in [8]. Similar ideas are employed by Carter [6] and Navarro-López in [35], where the
concept of deadness is introduced and used as a way of disproving liveness properties.
Intuitively, deadness is a formalization of an idea that inside certain regions the system
cannot be live, i.e. some desired property may never become true as the system evolves
inside a “deadness region”. These ideas were used in a case study [6, Chapter 5] also
featuring the drill system studied in [34], but with a different set of control parameters
and in which the verification objective was to prove the existence of a single trajectory
for which the drill eventually gets “stuck”, which is sufficient to disprove the liveness
(oscillation) property.

Region stability is similar to our notion of persistence [45], which requires all tra-
jectories to eventually reach some region of the state space. Sound and complete proof
rules for establishing region stability have been explored and automated [47], as have
more efficient encodings of the proof rule that scale better in dimensionality [31]. How-
ever, all algorithms we are aware of for checking region stability require linear or sim-
pler (timed or rectangular) ODEs [45,47,46,31,11,48]. Strong attractors are basins of
attraction where every state in the state space eventually reaches a region of the state
space [45]. Some algorithms do not check region stability, but actually check stronger
properties such as strong attraction, that imply region stability [45]. In contrast to these
works, our method checks the weaker notion of persistence for nonlinear ODEs.

She and Ratschan studied methods of proving set eventuality in continuous sys-
tems under constraints using Lyapunov-like functions [50]. Duggirala and Mitra also
employed Lyapunov-like function concepts to prove inevitability properties in hybrid
systems [12]. Möhlmann et al. developed Stabhyil [33], which can be applied to non-
linear hybrid systems and checks classical notions of Lyapunov stability, which is a
strictly stronger property than persistence. In [32] Möhlmann et al. extended their work
and applied similar ideas, using information about (necessarily invariant) sub-level sets
of Lyapunov functions to terminate reachability analysis used for safety verification.
Prabhakar and Soto have explored abstractions that enable proving stability properties
without having to search for Lyapunov functions, albeit these are not currently applica-
ble to nonlinear systems [48]. In summary, in contrast to other works listed above, our
approach enables proving persistence properties in conjunction with safety properties

9 e.g numerical solution computation with “qualitative” features, such as invariance of certain
regions.

Verifying safety and persistence properties of hybrid systems 13

for nonlinear, non-polynomial hybrid systems and does not put restrictions on the form
or the type of the invariant used in conjunction with bounded time reachability analysis.

7 Conclusion
This paper explored a combined technique for safety and persistence verification em-
ploying continuous invariants and reachable set computation based on constructing
flowpipes. The approach was illustrated on a model of a simplified oil well drill string
system studied by Navarro-López et al., where the verification objective is to prove ab-
sence of damaging stick-slip oscillations. The system was useful in highlighting many
of the existing practical challenges to applying and automating the proposed verifica-
tion method. Many competing approaches already exist for verifying safety in hybrid
systems, but these rarely combine different methods for reachability analysis and de-
ductive verification, which our approach combines. We demonstrate that a combination
of different approaches can be more practically useful than each constituent approach
taken in isolation.

Acknowledgements The authors wish to thank the anonymous reviewers for their care-
ful reading and valuable suggestions for improving this paper.

References
1. CAPD library. Online http://capd.ii.uj.edu.pl/
2. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-valued spe-

cial functions. Journal of Automated Reasoning 44(3), 175–205 (2010)
3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. pp. 209–229 (1992)
4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic

methods on high-order Taylor models. Reliable Computing 4(4), 361–369 (1998)
5. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
6. Carter, R.A.: Verification of liveness properties on hybrid dynamical systems. Ph.D. thesis,

University of Manchester, School of Computer Science (2013)
7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid

systems. In: CAV. pp. 258–263 (2013)
8. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.:

Abstraction and counterexample-guided refinement in model checking of hybrid systems.
International Journal of Foundations of Computer Science 14(4), 583–604 (2003)

9. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In: Automata Theory and Formal Languages. pp. 134–183 (1975)

10. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: HSCC. pp. 174–
189 (2007)

11. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: 2011 IEEE/ACM Interna-
tional Conference on Cyber-Physical Systems, ICCPS. Proceedings, pp. 22–31 (Apr 2011)

12. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid systems. In:
HSCC. pp. 115–124. ACM, New York, NY, USA (2012)

13. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT modulo ODE
approach to hybrid systems analysis by combining different enclosure methods. Software
and System Modeling 14(1), 121–148 (2015)

14. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In: CAV (2011)

15. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An axiomatic tacti-
cal theorem prover for hybrid systems. In: CADE (2015)

http://capd.ii.uj.edu.pl/

14 A. Sogokon, P. B. Jackson, T. T. Johnson

16. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants.
In: TACAS. pp. 279–294 (2014)

17. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking differential
invariance of algebraic sets. In: VMCAI. pp. 431–448 (2015)

18. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta,
A., Malik, S. (eds.) CAV, LNCS, vol. 5123, pp. 190–203. Springer (2008)

19. Henzinger, T.A.: The theory of hybrid automata. pp. 278–292. IEEE Comp. Soc. Press (1996)
20. Immler, F.: Verified reachability analysis of continuous systems. In: TACAS (2015)
21. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for hybrid sys-

tems. In: TACAS 2015. pp. 200–205 (2015)
22. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-

tems 2(4), 255–299 (1990)
23. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs.

Applied Numerical Mathematics 57(10), 1145–1162 (2007)
24. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP.

In: Programming Languages and Systems, pp. 1–15 (2010)
25. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical

systems. In: EMSOFT. pp. 97–106. ACM (2011)
26. Lygeros, J., Johansson, K.H., Simić, S.N., Zhang, J., Sastry, S.S.: Dynamical properties of

hybrid automata. IEEE Transactions on Automatic Control 48(1), 2–17 (2003)
27. Maidens, J.N., Arcak, M.: Reachability analysis of nonlinear systems using matrix measures.

IEEE Transactions on Automatic Control 60(1), 265–270 (Jan 2015)
28. Maidens, J.N., Arcak, M.: Trajectory-based reachability analysis of switched nonlinear sys-

tems using matrix measures. In: CDC. pp. 6358–6364 (Dec 2014)
29. Makino, K., Berz, M.: Cosy infinity version 9. Nuclear Instruments and Methods in Physics

Research Section A 558(1), 346–350 (2006)
30. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems

by linear algebraic methods. In: SAS. pp. 373–389 (2010)
31. Mitrohin, C., Podelski, A.: Composing stability proofs for hybrid systems. In: Formal Model-

ing and Analysis of Timed Systems - 9th International Conference, FORMATS. Proceedings,
pp. 286–300 (2011)

32. Möhlmann, E., Hagemann, W., Theel, O.E.: Hybrid tools for hybrid systems - proving sta-
bility and safety at once. In: FORMATS. pp. 222–239 (2015)

33. Möhlmann, E., Theel, O.: Stabhyli: A tool for automatic stability verification of non-linear
hybrid systems. In: HSCC. pp. 107–112. ACM (2013)

34. Navarro-López, E.M., Carter, R.: Hybrid automata: an insight into the discrete abstraction of
discontinuous systems. International Journal of Systems Science 42(11), 1883–1898 (2011)

35. Navarro-López, E.M., Carter, R.: Deadness and how to disprove liveness in hybrid dynamical
systems. Theor. Comput. Sci. 642(C), 1–23 (Aug 2016)

36. Navarro-López, E.M., Suárez, R.: Practical approach to modelling and controlling stick-slip
oscillations in oilwell drillstrings. In: Control Applications, 2004. Proceedings of the 2004
IEEE International Conference on. vol. 2, pp. 1454–1460. IEEE (2004)

37. Nedialkov, N.S.: Interval Tools for ODEs and DAEs. In: SCAN (2006)
38. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs.

SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)
39. Nishida, T., Mizutani, K., Kubota, A., Doshita, S.: Automated phase portrait analysis by inte-

grating qualitative and quantitative analysis. In: Proceedings of the 9th National Conference
on Artificial Intelligence. pp. 811–816 (1991)

40. Paulson, L.C.: MetiTarski: Past and Future. In: Beringer, L., Felty, A. (eds.) Interactive The-
orem Proving, LNCS, vol. 7406, pp. 1–10. Springer Berlin Heidelberg (2012)

Verifying safety and persistence properties of hybrid systems 15

41. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–
189 (2008)

42. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput. 20(1), 309–352 (2010)

43. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
In: CAV. pp. 176–189 (2008)

44. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. pp. 171–178 (2008)

45. Podelski, A., Wagner, S.: Model checking of hybrid systems: From reachability towards
stability. In: HSCC. Proceedings, pp. 507–521 (2006)

46. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: FORMATS. Pro-
ceedings, pp. 320–335 (2007)

47. Podelski, A., Wagner, S.: A sound and complete proof rule for region stability of hybrid
systems. In: HSCC. Proceedings, pp. 750–753. Springer (2007)

48. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid sys-
tems. In: Computer Aided Verification - 25th International Conference, CAV. Proceedings.
pp. 280–295 (2013)

49. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In:
HSCC. pp. 477–492. Springer (2004)

50. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems
by computation of Lyapunov-like functions. SIAM J. Control and Optimization 48(7), 4377–
4394 (Jul 2010)

51. Richardson, D.: Some undecidable problems involving elementary functions of a real vari-
able. Journal of Symbolic Logic 33(4), 514–520 (12 1968)

52. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed
points. In: HSCC. pp. 221–230 (2010)

53. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems.
FMSD 32(1), 25–55 (2008)

54. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for
polynomial continuous systems. In: VMCAI 2016. pp. 268–288 (2016)

55. Sogokon, A., Jackson, P.B.: Direct formal verification of liveness properties in continuous
and hybrid dynamical systems. In: FM 2015. pp. 514–531 (2015)

56. Sogokon, A., Jackson, P.B., Johnson, T.T.: Verifying safety and persistence properties of
hybrid systems using flowpipes and continuous invariants. Tech. rep., Vanderbilt University
(2017)

57. Strzeboński, A.W.: Cylindrical decomposition for systems transcendental in the first variable.
J. Symb. Comput. 46(11), 1284–1290 (2011)

58. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: Kannan,
R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2009)

59. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC, LNCS,
vol. 4981, pp. 658–661. Springer (2008)

60. Wang, S., Zhan, N., Zou, L.: An Improved HHL Prover: An Interactive Theorem Prover for
Hybrid Systems. In: ICFEM. pp. 382–399 (2015)

61. Xue, B., Easwaran, A., Cho, N.J., Fränzle, M.: Reach-avoid verification for nonlinear sys-
tems based on boundary analysis. IEEE Transactions on Automatic Control (2016)

62. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a descent
guidance control program of a lunar lander. In: FM. pp. 733–748 (2014)

63. Zhao, H., Zhan, N., Kapur, D.: Synthesizing switching controllers for hybrid systems by
generating invariants. In: Theories of Programming and Formal Methods - Essays Dedicated
to Jifeng He on the Occasion of His 70th Birthday. pp. 354–373 (2013)

	 Verifying safety and persistence properties of hybrid systems using flowpipes and continuous invariants

