Anonymized Reachability of Rectangular Hybrid
Automata Networks

Taylor T. Johnson® and Sayan Mitra?

1 University of Texas at Arlington, Arlington, TX 76019, USA
taylor. johnson@uta.edu,
2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
mitras@illinois.edu,

Abstract. In this paper, we present a method for computing the set of reachable
states for networks consisting of the parallel composition of a finite number of the
same hybrid automaton template with rectangular dynamics. The method utilizes
a symmetric representation of the set of reachable states (modulo the automata
indices) that we call anonymized states, which makes it scalable. Rather than ex-
plicitly enumerating all the automaton indices in formulas representing sets of
states, the anonymized representation encodes only: (a) the classes of automata,
which are the states of automata represented with formulas over symbolic indices,
and (b) the number of automata in each of the classes. We present an algorithm
for overapproximating the reachable states by computing state transitions in this
anonymized representation. Unlike symmetry reduction techniques used in finite
state models, the timed transition of a network composed of hybrid automata
causes the continuous variables of all the automata to evolve simultaneously. The
anonymized representation is amenable to both reducing the discrete and contin-
uous complexity. We evaluate a prototype implementation of the representation
and reachability algorithm in our SMT-based tool, Passel. Our experimental re-
sults are promising, and generally allow for scaling to networks composed of tens
of automata, and in some instances, hundreds of automata.

Keywords: hybrid automata network, reachability, verification, symmetry

1 Introduction

Networks consisting of automata that communicate via shared variables are useful
for modeling distributed algorithms such as mutual exclusion algorithms, media ac-
cess control (MAC) such as time-division multiple access (TDMA) protocols, and dis-
tributed cyber-physical systems (CPS) such as air-traffic control systems. However, as
the discrete state-space of the network consisting of parallel compositions of these au-
tomata grows exponentially in the number of automata, automated analysis is challeng-
ing, and is particularly challenging for timed and hybrid systems, where the number
of continuous variables (dimensions) also grows. Such networks are often specified
in a symmetric manner—such as being composed of instantiations of an automaton
template—and are often amenable to methods that exploit symmetries. Formal analy-
sis and state-space construction methods that exploit symmetries have been thoroughly

investigated for many classes of system models, because such methods ameliorate the
state-space explosion problem [1-13]. Several methods exploiting symmetry have been
developed and implemented for the Mur¢ verification system [14] for discrete systems.
The scalarset data structure, which is a finite unordered set, is developed and added to
Mur in [2], and was one of the first approaches of automatically detecting and exploit-
ing symmetries in model checking. The repetitive id data structure is applied to several
discrete parameterized systems like cache coherence protocols in [4].

Advances in tools like UPAAAL [15] and PAT [16] that exploit state-space sym-
metries to reduce its size vastly have enabled scaling to larger models. For instance,
the scalar set technique developed for Murp was extended for timed systems and im-
plemented in UPAAAL [7, 17], and a clock-symmetry reduction method [13] has been
implemented in the PAT model checker. Quasi-equal clocks and variables for timed [18]
and hybrid [19] automata networks also allow reductions in state-space explosion, but
do not require automata in the network to be identical (modulo identifiers), as we do.
We focus on safety properties, and to the best of our knowledge, before this paper, such
techniques have not yet been applied to systems with more general continuous dynam-
ics like the rectangular differential inclusions we consider. The method described in
this paper and implemented in our Passel verification tool [20-22] uses the SMT solver
73 [23]. The method is used as a subroutine in methods for performing uniform verifi-
cation of parameterized networks of hybrid automata (e.g., verification for all network
sizes, YN € N, A4 ...|[[An = C((N)), although we highlight that this paper address
fixed, constant choices of N only.

2 Hybrid Automata Network Syntax and Semantics

We specify the behavior of each participant in the network using a syntactic structure
called a hybrid automaton template, denoted by A(N,4).> The special symbols N and
i are natural numbers that respectively refer to the number of automata, and the *"
automaton. For a natural number n, the set [n] is {1,...,n}. For a set S, the set S| is
S U{L}. Fixing a particular value of N gives concrete instances of [N] and [N] .

Terms and Formulas. We use a class of formulas to: (a) specify the syntactic com-
ponents of a hybrid automaton template A(N, 7), and (b) represent sets of states symbol-
ically in the reachability computation. Formulas are built-up from constants, variables,
and terms of several types. The grammar for formulas is:

[Term ::= L | 1| N || pli]

DTerm ::=1. | q | ¢[ITerm]

RTerm ::=011|r. |z | z[ITerm]

RPoly ::= RTerm | RPoly; + RPoly, | RPoly; — RPoly, | (RPoly; * RPoly,)
Atom ::= |Term; = ITermy | DTerm; = DTerms | RPoly < 0

Formula ::= Atom | =Formula | Formula; A Formulag | 3z Formula

3 Readers interested in additional technical details are referred to [22, Chapters 2 and 4].

The grammar is composed of index terms (I Term) with type [N] | , discrete terms (DTerm)
with type L, and real terms (RTerm) with type R. For a discrete term, [is constant from
L and ¢ is a discrete variable. For a real term, r. is a real numerical constant and z is a
real variable. Index (p[i]), discrete (¢[I Term]), and real (z[| Term|) pointer variables are
names for arrays composed of N elements of the corresponding type, respectively refer-
enced at an index variable ¢, or an evaluation of an index term I Term. Atoms (Atom) are
composed of ordered relations between real polynomials (RPoly), as well as equality
relations between index terms and discrete terms. Formulas are composed of Boolean
combinations of atoms and shorter formulas. Comparison operators are expressed using
negation (—) and conjunction (A) in formulas. By combining the Boolean operators A
and — with the < operator, other comparison operators like =, #, <, >, and >, can be
expressed in formulas for indices and reals. Universal quantification can be expressed
by —=dz : Formula = Vz : —Formula, where z is called a bound variable, and is a
variable of one of the types. We assume the language contains the standard quantifiers
and Boolean operators, even if not explicitly specified in the grammar (e.g., universal
quantification V, implication =, disjunction V, less-than-or-equal <, etc.).

Variables. A hybrid automaton A(N, ¢) has a set of variables, each of which is a
name used for referring to state and is a term in the grammar just defined. As specified in
the grammar, each variable v is associated with a fype—denoted type(v)—that defines
a set of values the variable may take. The type of a variable may be: (a) L: a finite set
of locations names, (b) [N],: a set of automaton indices—called pointers—with the
special element | that is not equal to any automaton’s index, or (c) R: the set of real
numbers. A variable may be a local variable with a name of the form variable_nameli],
or global, in which case its name does not have a symbolic index [i]. For example,
qld] : L, p[d] : [N]L, and z[i] : R respectively define location, pointer, and real typed
local variables, while g : [N] is a global variable of pointer type. The sets of local
and global variables are denoted by V1, (N, ¢) and V¢ (N, ¢), respectively. The valuation
of a variable v is a function that associates the variable name v to a value in its type
type(v). For a set of variables V, val(V) is the set of valuations of each v € V. For
a set of variables V, V' = {¢/|v € V} and V = {i|v € V A type(v) = R}. V' is
used for specifying effects (resets) of discrete transitions and V is used for specifying
continuous dynamics. For a formula ¢, let: (a) vars(¢) be the set of variables appearing
in ¢, (b) ivars(¢) be the set of distinct index variables appearing in ¢, specifically
wars(¢) = {v € ¢lv & V(i) A type(v) = [N]}, (c) free(¢) be the set of free variables
appearing in ¢, and (d) bound(¢) be the set of bound variables appearing in ¢.

Definition 1. Let N be a symbol representing an arbitrary natural number and i be a
symbol representing an arbitrary element of [N]. A hybrid automaton template A(N, 7)
is specified by the following syntactic components: (a) V(N,1): a finite set of variable
names with associated types. (b) L: a finite set of location names. (c) Init(N,i): an
initial condition formula over V(N, 7). (d) Trans(N, 4): a finite set of discrete transition
statements, each of which is a tuple (from, to, grd, eff), where from, to € L, grd
is a formula over V(N, i) called a guard and eff is a formula over V(N,i) U V'(N,)
called an effect. (e) Traj(N,i): for each element in L, there is a trajectory statement,
each of which is a tuple (loc, inv, frate), where loc € L, inv is a formula over V(N, 7)

called an invariant, and frate is a formula over V(N, i) UV(N, i) called a flowrate that
specifies how real variables evolve over time.

When clear from context, we drop the parameter N, for instance, a hybrid automaton
template A(N, 7) is written .A(¢), the set of variables is written V(7), etc. The guard
is an enabling condition that must be satisfied so that a transition may be taken. The
effect models the update of state, and is a formula over the variables V(i) U V(i)'. A
trajectory statement consists of an invariant condition inv and a flow rate frate. The
invariant is an assertion involving only real variables of A(¢). The flow rate associates
each real-valued variable of A(¢) with a rectangular differential inclusion.

2.1 Semantics of Hybrid Automata Networks

For a hybrid automaton template .A(N, ¢), we define a transition system to formalize the
semantics of the network where N instantiations of .A(N, 7) operate concurrently.

Definition 2. Let N be a symbol representing an arbitrary natural number. A hybrid
automata network is a muple AN = <VN, QN, @N,TN>, where: (a) VN are the vari-

ables of the network, VN = Vg U UL‘\I:1 Vi (i), (b) QN C wal(VN) is the state-space,
(c) ON C QN is the set of initial states, and (d) TN C QN x QN is the transition relation,
which is partitioned into sets of discrete transitions DN C QN x QN and continuous
trajectories TN C QN x QN.

A state x in QN of AN is defined in terms of the valuations of all the variables of
all its components. A state is a valuation of all the variables in VN and is denoted by
boldface v, v/, etc. The set of all states is called the state-space and is denoted QN. Ifa
state v € QN satisfies a formula ¢p—that is, the corresponding variable valuations result
in ¢ evaluating to true—we write v |= ¢. For a formula ¢ with vars(¢) C V(i), the
corresponding states x € QN satisfying ¢ are [¢] = {x € QV|v = ¢}. For instance,
the initial states ON = [Init(7)] are the states satisfying Init(). For some state v, the
valuation of a particular local variable x[i] € V(i) for automaton .A(7) is denoted
by v.z[i], and v.g for some global variable g in V(7). For a set of variables V, the
valuations of each v € V at state v is denoted by v.V. For a formula ¢ and a set of
variables V C wars(¢), let ¢ V be the projection of ¢ onto the variables V, such that
vars(¢l V) = Vand [¢] C [¢J V], which can be computed by eliminating the existen-
tial quantifiers from the formula Jvars(¢) \ V : ¢. The evolution of the states of AN are
describing by a transition relation TN C QN x QN. For a pair (v, v’) € TN, we use the
notation v — v’, where v is called the pre-state and v’ is called the post-state. There
are two ways variables may be updated by TN. Discrete transitions DN model instanta-
neous changes and continuous trajectories 7N model evolution over a real time interval.
When necessary to disambiguate state updates owing to either discrete transitions and
continuous trajectories, we write v —>pn v/ or v —n v/, respectively.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of
state due to one automaton in the network AN. Informally, a discrete transition from
pre-state v to post-state v/ models the discrete transition of one particular hybrid au-
tomaton A(7) by some transition t € Trans(i). There is a discrete transition v —

grd:last # 1 = (q[last] # base V z[last] > La)
eff:last’ =i

loc:base
frate:

Z[Z] € [’UL,UU]
inviz[i] < Lp

loc:fly
frate:i[i] = 0

loc:runway

start — frate:i[i] = 0

grd:z[i] > Lp A z[last] > Lg
eff:last’ =i AZ'[i{] =0

Fig. 1. Hybrid automaton template of aircraft ¢ € [N] for a simplified SATS protocol. Here, x[i] is
the position of aircraft ¢ from the start of the base location, g[¢] is the discrete location, last is the
index of the last aircraft to enter the base, L is the spacing length aircraft must have traversed
in the base before another aircraft may enter the base, and L g is the length of the base [24].

v/ € DNiff: 3i € [N] 3t € Trans(i) : v.V(i) = grd(t,i) A v'.V(i) & eff(t,i) A
(Vj€[N]:j#i= v V(j) =v.V(j)). From the pre-state v, any automaton .4(¢) in
the network AN that has some transition where v satisfies its guard may update its post-
state according to the transition’s effect, while the variable valuations of all the other
automata in AN remain unchanged.

Continuous Trajectories. Continuous trajectories model update of state over inter-
vals of real time. Informally, there is a trajectory v — v/ € TN iff some amount of
time—t.—can elapse from v, such that, (a) the states of all automata in the network
AN are updated to v’ according to their individual trajectory statements, and (b) while
ensuring the invariants of all automata along the entire trajectory. Formally, trajecto-
ries are defined as solutions of differential equations or inclusions specified in the tra-
jectory statements of A(i). Let X(N,i) = {v € V(N,i)|type(v) = R} be the set
of variables of .4(i) with real type. For a state v, a location m, a real time ¢, and a
variable v € X(¢) with real type, let flow (v, m,v,t) = v.v + th:O frate(m, v)dr.
Since frate may specify a differential inclusion, flow is a set-valued function. There
is a trajectory v . — v/ € TViff: 3t. € Ry Vt, € Rso Vi € [N] Im € L
t, <t A flow(v,m,X(i),t,) = inv(m,i) A v'.X(i) € flow(v, m,X(3),t.). For
each ¢ € [N] and each real variable x[i], v.«[{] must evolve to the valuations v’.z[i],
in exactly t. time in some location m € L according to the flow rates allowed for z[i]
in location m. In addition, all intermediate states along the trajectory must satisfy the
invariant inv(m, 7).

Executions and Invariants. An execution of the network AN models a particular
behavior of all the automata in the network. An execution of AN is a sequence of states
a = vq,Vy,...such that vo € ON, and for each index k appearing in the sequence,
(Vi,Vii1) € TN. A state x is reachable if there is a finite execution ending with x.
The set of reachable states for AN is Reach(AN). The set of reachable states for AN
starting from an arbitrary subset Vo C QN is Reach(AN, V(). An invariant for AN is
any set of states that contains Reach(AN).

Example 1. Each aircraft in the Small Aircraft Transportation System (SATS) [24] can
be modeled as an instance of the template .4(7) [20,21,25], and we present a simplified
model of SATS in Figure 1. Aircraft communicate by reading the valuations of discrete
variables and continuous positions using pointer variables to reach the runway location
while maintaining a safe separation. Before attempting the landing procedure, aircraft
1 checks if any other aircraft already attempting to land is sufficiently far away—Lg

distance—from the geographic start of the approach to the runway, measured along
one-dimension. If so, aircraft ¢ may begin an approach to the runway. The aircraft travel
along the approach to the runway with velocities &[i] € [vr,,vy] for 0 < vy < vy.
After traversing the length Lp of the base location, the aircraft may either land, or
return to the start of the base location. The main safety property in SATS is safe sep-
aration, which is informally specified as: if any aircraft ¢ in the base location is ahead
of any other aircraft j in the base location, then the positions of the aircraft are ac-
tually separated by at least Lg distance. Formally, safe separation is: Vi,j € [N] :
(i # j A qli] = base A q[j] = base A zli] > x[j]) = (a[i] - «[j] > Ls)-

3 Anonymized State-Space Representation

For any fixed N € N, let ¢ be a symbol representing an arbitrary element of [N], and
for the hybrid automaton template A(N, i), the composed automaton modeling a net-
work of size N is AN (Definition 2). We fix AN and present an algorithm for comput-
ing Reach(AN) that takes advantage of the symmetries in the template A(7) instanti-
ated in AN. The representation of Reach(AN) is anonymized, so numerical automaton
indices—1, 2, ..., N—are not explicitly enumerated and are instead modeled using
symbolic indices—i1, i2, . . ., iN. Frequently, the number of symbolic indices needed to
represent equivalent states is significantly smaller than the number of numerical indices.
For a given state x € QV, the set of corresponding states X C QN that are equivalent
modulo indices is obtained by substituting any numerical index ¢ of all local variables
v[i] € V(i) with a symbolic index j with type [N].

Definition 3. Two states x, x' € QN of AN, are equivalent modulo indices if there
exists a bijection 7 : [N] = [N] such that for each v[i] € V(3), x.v[i] = X' .v[n(i)]. For
a state x € QN of AN, the set of states £(x) that is equivalent modulo indices to X is:
e(x) = {x' € QN | x and X' are equivalent modulo indices).

We note this is the same type of definition as the existence of an automorphism used
in [1-3]. A state is equivalent modulo indices to itself by picking the bijection 7 to be the
identity mapping. For a formula ¢, we will overload 7 and write w(¢), which modifies
¢ by applying 7 to each index variable i € ivars(¢). The anonymized representation
takes this idea a step further by utilizing symbolic names for process indices along with
counters, and a formula representing the valuations of any global variables.

Definition 4. For a fixed N € N and a template A(N, 1), consider the automaton net-
work AN (Definition 2). An anonymized state S of AN is a tuple (Classes, G), where:

(a) Each anonymized class C € Classes is a tuple C = (Count, I,Form), where:
(i) Form is a quantifier-free formula over the variables V1, (i1) U ... U V[(ic.1),
where i1, ..., i1 are I distinct symbolic index variables.
(ii) I is a natural number called the class’s rank, which is equal to the number of
distinct symbolic index variables appearing in Form: I = |ivars(Form)|.
(iii) Count is a natural number called the class’s count, and satisfies N > Count >
|I|. The count is the number of automata of class C.

Additionally, the sum of all the class counts in S equals N: N = C.Count,
where C.Count is the count of class C.

(b) G is a quantifier-free formula over the global variables V .

ZCES.Classes

For an anonymized class C, requirement (iii) of Definition 4 that C.Count > |C.I|
means the number of automata satisfying Form is at least the number of distinct index
variables appearing in Form. We use the (.) notation to refer to particular elements of
tuples. For example, C.Count refers to the count of anonymized class C, C.Form refers
to its formula, etc. When the number of index variables C.I is clear from context, we
drop it from the C tuple and write (Count, Form). Two anonymized classes C; and Cs
over the same symbolic indices (ivars(C;.Form) = ivars(Cy.Form)) are equivalent and
write C; = Cy iff they have the same class formulas and class counts:*

Definition 5. Two classes C1 and Co are equivalent, C; = Cs iff C;.Count = Cs.Count A
Ci1.Form < Cy.Form.

Here, equivalence between the class formulas is a semantic and not syntactic notion,
and means the formula C;.Form < Co.Form is valid.We say two anonymized states S;
and S, are equivalent and write S; = S, iff they have the same state counts, the classes
in their sets of classes are equivalent, and their global formulas are equivalent.

Definition 6. Two anonymized states S1 and So are equivalent, S = Sy, iff V C; €
Si.Classes dCy € Sy.Classes C; = Cy A Gy = Go.

We make the following assumption about the format of the class formulas.

Assumption 1. For an anonymized state S, for each class C € Classes, the class for-
mula C.Form is in conjunctive normal form (CNF), and for each index i € {iy, ..., ic1},
C.Form contains an equality q[i] = | for some location | € L.

For example, Equation 1 (arsing from Example 1) satisfies this assumption. This as-
sumption ensures that each class has a control location specified to determine the tran-
sitions and trajectories that may be possible (recall Definition 1). Under Assumption 1,
the interpretation of an anonymized state S corresponds to a set of states of QN, which
we write as [S] and define formally next. Since the class formulas of S are over the
variables of automata with symbolic indices, the interpretation instantiates the symbolic
indices with specific elements of [N], which yields the set of states that are equivalent
modulo indices. First, we define a notion of consistent partitions of these indices.

“It is possible for classes with different ranks to represent the same states. For

example, consider S1 = ({(2,2,q[i1] = base A g[i2] = base)},last = L) and
S2 = ({(2,1,q[i1] = base)},last = L), which both represent there are two au-
tomata with location base and last is L, ie., [Si] = [S2]. However, we al-

low classes of different ranks because classes of different ranks may not express-
ible. For example, there is no way to express the following using rank 1 classes:
({(2, 2, q[i1] = base A g[iz] = base A z[i1] > x[i2])},last = L), which expresses that
there are two automata in base with one’s position at least as large as the other’s.

Definition 7. For an anonymized state S = < (Countq, I,Form),...,(County, I, Formy) ,G>,

C1 ck
we instantiate the set of symbolic indices {i, . .., i1, } with all possible values in [N] as
follows. A consistent partition of [N],

P=c{P, ..., P}, (P P

P Py,

is a partition of [N], such that, for any P; C P, (a) |P;| = Count; and (b) P; is
partitioned into 1; sets P, PjIj (and we recall that 1; is the rank of C;).

For a consistent partition P, we note that (a) > PP |P;| = N, since P partitions [N],
and (b) Count; > I; (by Definition 4, (iii)). For example, consider the anonymized
state (arsing from Example 1, Figure 1) with count three and rank two:

({(3,2, q[i1] = base A q[iz] = base A z[iz] > z[i1] + Lg)},last =41). (1)

One consistent partition is: P = {P}!, Pf} where P! = {1} and P} = {2,3}.
The set {{1,2,3}} is nor a consistent partition since it is partitioned into one set,
but I = 2, and Definition 8 requires each P; € P be partitioned into I; partitions.
For an anonymized state S, the set of consistent partitions ConsPart(S) are all con-
sistent partitions of [N]. Continuing Example 1 for 8, ConsPart(S) is {{{1},{2,3}},
{21, {1,3)) {03} {1, 211 (41,2}, {3}}. {{1, 3}, {2)}.and {{2, 3}, {1}}}. All these
partitions define the full set of states [S] that the anonymized state S represents. This is
equivalent to all the states equivalent modulo indices to the states [Sp] for a particular
consistent partition P.

Definition 8. For an anonymized state S and a consistent partition P € ConsPart(S),
the set of states of network AN represented by S corresponding to P are:

[sp] = {x € oN | x =G A Formy(P1) A ... AFormy(Py)}, 2)

Ayl 1 L I . -1
where each Form;(P;) = Vi; € P;,...,ij) € P;7 Form;(ij, ...

states of network AN represented by S with all consistent partitions is:

[s1= U [sel 3)

PeConsPart(S)

1;
,i;"). The set of

We have written Form;(ij, ... ,i;j) to highlight that Form; is over I; symbolic in-
dex variables. Note that Form;(F;) is equivalent to a finite-length conjunction since
each PjIj is a finite set. The next lemma states that this definition of interpretations of

anonymized states yields the same set of states as equivalence modulo identifiers.

Lemma 1. For an anonymized state S, for any x € [S], for any x' € (x), x’ € [3].

1 function areach (A(N,3), Init(i), N)
AnonReach « 0

3 Frontier «— {({(N, Init(¢)L VL (¢))},Init(i)l Vg (i)} // create initial anonymized state
while Frontier # 0 // repeat until no new states are added to the frontier
5 Frontieryey, < @ // initialize next frontier

AnonReach < AnonReach U Frontier // add frontier to reachable states
7 // compute successors of each anonymized state in the frontier
foreach anonymized state S in Frontier
9 Frontieryey < Frontieryey, U discPost(S) // =
Frontieryey, < Frontieryey, U contPost(S) // F r
11 Frontieryey < mergeAndDrop(Frontierye,, AnonReach)
Frontier < Frontieryey
13 return AnonReach

Fig. 2. On-the-fly anonymized reachability algorithm. The inputs are an automaton template
A(N, 1), an initial condition Init(¢), and a constant natural number N. The anonymized reachable
states AnonReach are computed as a fixed-point starting from the anonymized initial states.

Continuing Example 1 with the consistent partition P = {{1}, {2, 3}}, the states rep-
resented by Sp are:

[sp] = {x € Q®|x Vi € P!,i} € P} : g[i1] = base A qlis] = base A
xlia] > z[i1) + Ls A last =11}

{x € Q* | x [=(q[1] = base A q[2] = base A ¢[3] = base A
z2] > 2[1] + Ls Ax[3] > z[1] + Ls A last =1) }.

Applying Lemma 1, [S] = e([Sp]).

4 Anonymized Reachability of Hybrid Automata Networks

Next we describe an on-the-fly algorithm for overapproximating the reachable states of
a network AN using anonymized states. We note that the CNF requirement (Assump-
tion 1) is not restrictive: if a new class is created during the execution of the algorithm
that contains disjunctions, it is split into multiple classes with CNF formulas. We use
projections extensively, so recall the | notation introduced in Section 2.1.

Pseudocode for the reachability algorithm, areach appears in Figure 2. The algo-
rithm operates on frontiers of reachable states represented by the set Frontier, which
is initialized (line 3) to a singleton set with one class that has count equal to N and
class formula equal to Init(){ V1 (¢), which is Init(¢) projected onto the local vari-
ables. The global formula is initialized with Init(¢)] V(4), which is Init(¢) projected
onto the global variables. The set of reachable anonymized states computed so far is
the set AnonReach. Next (line 4), we remove an anonymized state S from Frontier,
compute anonymized post-states from S, and continue until no new anonymized states

1 function mergeAndDrop(Frontierye,, AnonReach)
foreach S in Frontierye,

3 if S € AnonReach then Frontierye, = Frontierye, \ {S}
else
5 foreach distinct pair of anonymized classes (C1,C2) in S.Classes
if —(C;.Form = Cy.Form) is UNSAT then
7 C1.Count <— Cj.Count + Co.Count // if equivalent, sum counts
S.Classes « S.Classes \ {Co} // if equivalent, drop equivalent class
9 return Frontierye,

Fig. 3. mergeAndDrop combines classes with equivalent class formulas and sums their counts.

1 function discPost(S)
Statesyey <+ 0
3 Vs + V/(i1) U ... U V/(ic1)
foreach anonymized class C in S.Classes

5 foreach symbolic index ¢ in Vs
foreach transition t in Trans(i)

7 Crew.Form < (C.Form A S.G A grd(t,i) A eff(t,1))) V' (i) // compute new class

// substitute primed variables with unprimed variables
9 Cpew-Form <— Substitute(Cyey.Form, V(i)’, V(7))

// project onto global variables for global constraint
11 Syew-G < Cyew.Form] V¢ (1)

// project onto local variables for local constraint
13 (Cyew-Count, Cyey.Form) <— (1, Cyey.Form| Vi, (4))

Snew.Classes < S.Classes \ {C} // remove pre—state class from posi—state cl
15 // add pre—state class to post—state classes if its count is at least it

if C.Count > C.I then Sye,.Classes < S.Classes U {(C.Count — 1,C.Form)}
17 // otherwise, pre—state class no longer exists (count less than rank)
else Syey.Classes < S.Classes U {(C.Count — 1,C.Form| Vs \ V(i)})

19 Snew.Classes < Syey.Classes U {Cyew} // add new class to new anonymized state
Statesyey <— Statesyew U {Swew}
21 return Statesyey

8

Fig. 4. discPost computes the post-states of an anonymized state S due to discrete transitions for
an automaton with index ¢ and states satisfying C’s formulas.

are added to Frontier. Anonymized post-states are added to the frontier using the set
Frontierye, (line 5). Computing successors (post states)—the states reachable from S in
one step—is composed of two parts: (a) computing the discrete successors correspond-
ing to transitions (line 9), and (b) computing the continuous successors corresponding
to trajectories (line 10).

Subroutine for Merging Classes. We first describe a subroutine, mergeAndDrop
(Figure 3). It takes a set of anonymized states Frontiery,, and returns a set of anonymized
state that is guaranteed to both (a) not have any equivalent classes (lines 7 through 8)
and (b) be new (not already represented in AnonReach) (line 3). Invariant 1 states that
no two class formulas in any reachable anonymized state are equivalent, and Invariant 2
states that no two anonymized states in AnonReach are equivalent (Definition 6).

Invariant 1. For any S € AnonReach, C1,Csy € S.Classes, C;.Form # Co.Form.
Invariant 2. For any distinct S1,S2 € AnonReach, S; # Ss.

Discrete Successors. The function discPost (Figure 4) computes the discrete suc-
cessors from an anonymized state S in the frontier (Figure 2, line 9). The post-states
Statesy., are added to the frontier Frontiery.,. First, we iterate over each class C in
S.Classes (line 4), and then we iterate over each index variable ¢ in the set of index
variables in the class formula, {i1,...,ic1} (line 5). Next, we iterate over the (syn-
tactic) transitions Trans(z) of A(N, i) (line 6). For a transition t € Trans(i) and an
anonymized class C, line 7 computes the subsequent class from C under the transition t,
made by the automaton with index <. This computation can be carried out using quan-
tifier elimination procedures over the types of the variables appearing in the guard and
effect of the transition t, and then syntactically unpriming all primed variables (rep-
resenting successors) following quantifier elimination using Substitute (line 9). This
step is an overapproximation, since it is computing the successors of each class regard-
less of the number of automata with states satisfying the anonymized class formula

1sses
rank

1 function contPost(S)

Vs V/G
3 // formula used to encode semantics of trajectories for all automata in the né|
postFormula < t. > 0AS.G
5 foreach anonymized class C in S.Classes // iterate over each class in pre—state
Vs < Vs U V/(i1)U... UV (ic1)
7 postFormula < postFormula A C.Form // encode pre—state class formula
// determine the locations any automata may be in each class (recall A:s
9 foreach location m in L
foreach ¢ in {i1,...,%c.1} // iterate over all indices (ranks)
11 if C.Form 7% (¢[i] = m) is UNSAT then // use location m if automaton i is in
// add the trajectory semantics overapproximating the post—states
13 postFormula < postFormula A inv(m,i) A X(i) € flow(m, X(2), te)
postFormula 4 postFormulal Vs
15 postFormula < Substitute(postFormula,V (i)', V(i))
Syew < RemapClasses (S, postFormula) // Figure 6
17 return Syey

Fig. 5. contPost function that computes the continuous successors from an anonymized state S.

Form, and just presuming there is some automaton with variable valuations satisfy-
ing Form. The post-state anonymized state Sye,, is constructed using the classes of the
anonymized state S of the current iteration along with the new anonymized class, Cyey
(lines 14 through 19). First, the classes for Syey, are set to be the anonymized classes of
S, without the anonymized class of the current iteration, C (line 14). Next, if the class
count of C is larger than its rank, then it is added to the classes of the post-state, with
its count reduced by one to indicate some automaton has left the set of states satisfying
the corresponding class formula (line 16). On the other hand, if the class count is equal
or less thanits rank, then the pre-state’s anonymized class C would no longer satisfy the
requirements of Definition 4, (iii), so its class formula is projected onto the variables of
all automata except those of automaton %, the one making a transition (line 18). How-
ever, this may result in two classes with equivalent formulas, since the algorithm has
not yet detected if any other classes had the same formula and assumed the new class
Crew had a count of one, which is why we use mergeAndDrop (Figure 2, line 11).
Lemma 2. (Anonymized Discrete Successor Soundness) For an anonymized state S, for
any corresponding concretized state x € [S], if x —pn X/, then x" € [discPost(S)].
Continuous Successors. An overapproximation of continuous successors are com-
puted using contPost—shown in Figure 5—called from symreach (Figure 2, line 10).
For an anonymized state S in the frontier, contPost computes an overapproximation
of the post-states from S owing to the individual trajectories of all automata in the
network for up to the most amount of time that can elapse before any invariant is vi-
olated. The anonymized state specifies a location m € L for each automaton in the
network (recall Assumption 1), and each location m specifies a trajectory statement,
so trajectories are defined for each automaton in the network. Each new anonymized
state Syey € Statesye, computed corresponds to the trajectory semantics updating the
continuous variables of all automata in the network AN. The variable postFormula
encodes the trajectory semantics of all automata in the network AN (line 4), which is
initially the constraint £, > 0, indicating that some positive real amount of time ¢,
will elapse. However, for an anonymized state S, for distinct anonymized classes C1,
Cs in S.Classes, the symbolic indices appearing in the formulas may be equal, i.e.,
Ji € dvars(C1) and 3j € dvars(Ce) such that ¢ = j. Since postFormula encodes
the states of all automata in the network, the symbolic index variables appearing in any

twork

1 function RemapClasses (S, postFormula)
Syew.Classes = ()
3 foreach anonymized class C in S.Classes
// project postFormula onto variables of indices in each pre—state class
5 Vs « V(i1)U...UV(ic1)
// create new class with post—state formula and copy pre—state count
7 (Cpew-Count, Cyey.Form) <— (C.Count, postFormulal Vs)
Syew.Classes <— Syey.Classes U Cyey // add new post—state class to post—state’s classes
9 Syew-N < S.N
return Syey

Fig. 6. RemapClasses recreates variables in post Formula using their pre-state indices, class
counts, and ranks to create the anonymized post-state Syey. It first projects onto the variables
with indices of each class in the pre-state and then uses the pre-state count to ensure class counts
remain constant over trajectories.
class formula of any anonymized class must be distinct. Rather than performing these
tedious syntactic manipulations, we assume that for an anonymized state S, for distinct
classes Cy, Cz in S.Classes, Vi € ivars(Cy), Vj € ivars(Cy), we have i # j.°

Each anonymized class formula C.Form of an anonymized state S specifies the lo-
cation(s) the automata are in (recall Assumption 1), so the first step is to determine the
dynamics that will modify each class formula. This is accomplished by first determin-
ing the appropriate flow-rate conditions to use for each class in S.Classes, which can
be detected by finding which Form imply the location variable ¢[é] is in some location
m € L. If the control location of automaton ¢ is found to be equal to location m, then the
trajectory statement of location m is used to define the semantics of the time-evolution
of 7’s continuous variables (line 13). The semantics of trajectories result in all the au-
tomata’s continuous variables evolving over time t., so the formula encoding the trajec-
tory statements of all automata is conjuncted (line 13). The post-states are computed by
projecting onto the primed variables of all classes, and then renaming primed variables
with their unprimed counterparts (line 15).° We call RemapClasses with the pre-state
S and post Formula, which encodes the post-state constraints, to recreate classes from
subformulas of postFormula (Figure 6 called at line 16). This is done to ensure the
class counts are constant when computing post-states due to trajectories.
Lemma 3. (Anonymized Continuous Successor Soundness) For an anonymized state S,
forany corresponding concretized state x € [S], if x —n X/, thenx’ € [contPost(S)].

The next invariant states that the sum of all the class counts Count equals N. It
follows from the definitions of discPost and contPost, since discPost always decreases
class counts by the same amount it increases them—so the sum remains invariant—and
contPost does not change class counts, only class formulas. Additionally, mergeAndDrop
changes class counts, but their sum remains the same since it removes any duplicate
classes after adding their counts (Figure 3, lines 7 through 8).
Invariant 3. For any S € AnonReach, N = 3" < C.Count.

Theorem 1 states partial correctness of the reachability algorithm, namely sound-
ness, that the concretization of the set of anonymized reachable states AnonReach con-
tains the set of reachable states for network AN, and follows from Lemmas 2 and 3. The

> This is a tedious, but trivial invariant that we maintain in our implementation in Passel, so we
make this assumption for clarity of presentation only.

% This may result in a DNF formula, and if so, each conjunctive clause is added as a new
anonymized state by iterating over the conjunctive clauses so all class formulas are CNF.

100000.00

10000.00

1000.00

100.00

Runtime (s)

10.00

1.00

0.10 e—¢
1 6 11 16 21 26 31
---A:--NFA Passel --4@--NFA Phaver N MUX-SEM Passel MUX-SEM Phaver
—&— MUX-INDEX-RA Passel —@—MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver
—A -MUX-SEM-RA Passel —@® =MUX-SEM-RA Phaver

Fig.7. Runtime comparison of PHAVer and Passel’s anonymized reachability. Vertical axis is
logarithmic and has units of seconds, and horizontal axis is number of automata, N.

approximation comes from two sources. First, index-typed variables are abstracted to
be equal or not equal to some index only. Second, the rectangular dynamics are overap-
proximated.

Theorem 1. (Soundness) For a fixed N € N, for the network AN composed of N instan-
tiations of the template A(N, 1), the anonymized reachable states AnonReach computed
by areach overapproximate the reachable states of AN: Reach(AN) C [AnonReach].

5 Experimental Results

The anonymized reachability algorithm has been implemented in the Passel verifica-
tion tool [20-22]. The current implementation of Passel uses the SMT solver Z3 [23]
for proving validity, checking satisfiability, and performing quantifier elimination. Pas-
sel is written in C# and uses the managed .NET API to version 4.3.2 of Z3 (from the
latest unstable branch of the Z3 repository as of April 2014). Passel proves validity
of a formula ¢ by checking unsatisfiability of —¢. The variables V(i) used in defining
A(N,) are specified to the SMT solver. Each local variable v[i] € Vp(7) is modeled
as an uninterpreted function v : [N] — type(v). Passel automatically generates and
asserts trivial data-type lemmas that the SMT solver requires. The experiments were
conducted in an Ubuntu 12.04 VMWare virtual machine with 4 GB RAM allocated
running Passel through Mono, executed on a modern laptop with a quad-core Intel i7
processor running Windows 8 with 16 GB RAM physically available. For comparison
purposes, we evaluated Passel, PHAVer (version 0.38), and SpaceEx (version 0.9.8b).
We do not present experimental results for SpaceEx, as the only scenario—out of the
PHAVer, LeGuernic-Girard [LGG], and STC scenarios—that can compute the reach-
able states of systems with rectangular differential inclusion dynamics (& € [a, b] for
real constants a < b) adequately is the PHAVer scenario, so the results are equivalent.
Figures 7 and 8 show, respectively, a runtime and memory usage comparison be-
tween PHAVer and Passel for several examples as a function of N, the number of au-

10000.00

1000.00

100.00

Memory (MB)

10.00

1.00
1 6 11 16 21 26 31

«++--NFA Passel -+ @--NFA Phaver N MUX-SEM Passel MUX-SEM Phaver
—— MUX-INDEX-RA Passel —@—MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver
—A -MUX-SEM-RA Passel =@ -MUX-SEM-RA Phaver

Fig. 8. Memory usage comparison of PHAVer and Passel’s anonymized reachability. Vertical axis
scale is logarithmic and has units of megabytes, and horizontal axis is number of automata, N.

tomata in the finite instantiation of the network.” The examples include the simplified
SATS model (from Figure 1), several timed mutual exclusion algorithms, several purely
discrete examples, and all properties were safety properties (invariants), such as safe
separation in SATS, mutual exclusion, etc. Comparing all the examples, the anonymized
reachability method implemented in Passel allows us to compute the reachable states of
networks composed of many more automata than PHAVer, which runs out of memory
on all examples for N < 11. The experimental results indicate that the primary advan-
tage is reduced memory growth. Even for networks of tens of automata, Passel never
uses more than a few hundred megabytes of memory as shown in Figure 8. The runtime
required by Passel could be reduced by performing some operations more efficiently
in the implementation—particularly the checks to determine if a new anonymized state
representation is actually new or not—which we plan to implement for future work.

6 Summary

In this paper, we present an on-the-fly forward reachability algorithm that computes an
anonymized representation of the reachable states for hybrid automata networks con-
sisting of N instantiations of a template A(N, 7). The anonymized representation avoids
generating all permutations of automata indices and states. We showed it to be effec-
tive at computing the reachable states of networks with tens of automata for several
examples, with significantly lower memory usage than PHAVer.

References

1. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal logic model checking,”
Formal Methods in System Design, vol. 9, pp. 77-104, 1996.

2. C. N. Ip and D. L. Dill, “Better verification through symmetry,” Formal Methods in System Design,
vol. 9, pp. 41-75, 1996.

3. E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal Methods in System Design,
vol. 9, no. 1-2, pp. 105-131, 1996.

7 Passel and the examples may be downloaded from: https://publish.illinois.
edu/passel-tool/.

https://publish.illinois.edu/passel-tool/
https://publish.illinois.edu/passel-tool/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. N. Ip and D. L. Dill, “Verifying systems with replicated components in Mury,” Formal Methods in
System Design, vol. 14, no. 3, May 1999.

. V. Braberman, D. Garbervetsky, and A. Olivero, “Improving the verification of timed systems using

influence information,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. LNCS,
J.-P. Katoen and P. Stevens, Eds. Springer, 2002, vol. 2280, pp. 21-36.

. G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen, “Static guard analysis in timed automata verifica-

tion,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. LNCS, H. Garavel and
J. Hatcliff, Eds. Springer, 2003, vol. 2619, pp. 254-270.

. M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaandrager, “Adding symmetry reduction

to UPPAAL,” in Formal Modeling and Analysis of Timed Systems (FORMATS '03), ser. LNCS, K. G.
Larsen and P. Niebert, Eds., no. 2791. Springer—Verlag, 2004, pp. 46-59.

. E. Emerson and T. Wahl, “Dynamic symmetry reduction,” in Tools and Algorithms for the Construction

and Analysis of Systems, ser. LNCS, N. Halbwachs and L. Zuck, Eds. Springer, 2005, vol. 3440, pp.
382-396.

. W.D. Obal, M. McQuinn, and W. Sanders, “Detecting and exploiting symmetry in discrete-state Markov

models,” Reliability, IEEE Transactions on, vol. 56, no. 4, pp. 643-654, Dec. 2007.

T. Wahl, N. Blanc, and E. Emerson, “SVISS: Symbolic verification of symmetric systems,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS, C. Ramakrishnan and J. Rehof,
Eds. Springer, 2008, vol. 4963, pp. 459-462.

G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Symbolic counter abstraction for concurrent soft-
ware,” in Computer Aided Verification, ser. LNCS, A. Bouajjani and O. Maler, Eds. ~ Springer, 2009,
vol. 5643, pp. 64-78.

J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. André, “Modeling and verifying hierarchical real-time
systems using stateful timed csp,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 1, pp. 1-29, Mar.
2013.

Y. Si, J. Sun, Y. Liu, and T. Wang, “Improving model checking stateful timed csp with non-zenoness
through clock-symmetry reduction,” in Formal Methods and Software Engineering, ser. LNCS, L. Groves
and J. Sun, Eds. Springer, 2013, vol. 8144, pp. 182-198.

D. L. Dill, “The murp verification system,” in Proceedings of the 8th International Conference on Com-
puter Aided Verification, ser. CAV *96. London, UK, UK: Springer-Verlag, 1996, pp. 390-393.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL: A tool suite for automatic
verification of real-time systems,” in Hybrid Systems II1, ser. LNCS, R. Alur, T. Henzinger, and E. Sontag,
Eds. Springer, 1996, vol. 1066, pp. 232-243.

J. Sun, Y. Liu, J. Dong, and J. Pang, “PAT: Towards flexible verification under fairness,” in Computer
Aided Verification, ser. LNCS, A. Bouajjani and O. Maler, Eds. Springer, 2009, vol. 5643, pp. 709-714.
M. Hendriks, “Model checking timed automata: Techniques and applications,” Ph.D. dissertation, Uni-
versity of Nijmegen, The Netherlands, 2006.

C. Herrera, B. Westphal, S. Feo-Arenis, M. Muiliz, and A. Podelski, “Reducing quasi-equal clocks in
networks of timed automata,” in Formal Modeling and Analysis of Timed Systems, ser. LNCS, M. Jur-
dzinski and D. Nickovic, Eds. Springer, 2012, vol. 7595, pp. 155-170.

S. Bogomolov, C. Herrera, M. Muiiiz, B. Westphal, and A. Podelski, “Quasi-dependent variables in
hybrid automata,” in 17th International Conference on Hybrid Systems: Computation and Control, 2014.
T. T. Johnson and S. Mitra, “A small model theorem for rectangular hybrid automata networks,” in Pro-
ceedings of the IFIP International Conference on Formal Techniques for Distributed Systems, Joint 14th
Formal Methods for Open Object-Based Distributed Systems and 32nd Formal Techniques for Networked
and Distributed Systems (FMOODS-FORTE), ser. LNCS. Springer, June 2012, vol. 7273.

, “Invariant synthesis for verification of parameterized cyber-physical systems with applications to
aerospace systems,” in Proceedings of the AIAA Infotech at Aerospace Conference (AIAA Infotech 2013),
Boston, MA, Aug. 2013.

T. T. Johnson, “Uniform verification of safety for parameterized networks of hybrid automata,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, 2013.

L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Proc. of 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS *08/ETAPS ’08.
Springer-Verlag, 2008, pp. 337-340.

T. S. Abbott, M. C. Consiglio, B. T. Baxley, D. M. Williams, K. M. Jones, and C. A. Adams, “Small
aircraft transportation system higher volume operations concept,” NASA, Tech. Rep. NASA/TP-2006-
214512, L-19215, Oct. 2006.

T. T. Johnson and S. Mitra, “Parameterized verification of distributed cyber-physical systems: An aircraft
landing protocol case study,” in ACM/IEEE 3rd International Conference on Cyber-Physical Systems,
Apr. 2012.

start —|

Fig.9. MUX-SEM mutual exclusion algorithm for automaton .A(7) for illustrating the
anonymized state-space representation.

A Appendix: Additional Case Study Details

A.1 SATS Example from Example 1 and Figure 1

The SSATS simplified Small Aircraft Transportation System example is the most chal-
lenging example we evaluate. PHAVer was able to compute the reachable states of
SSATS up to N = 5 using around 350 MB (as shown in Figure 8) and requiring a few
minutes (Figure 7). In comparison, Passel was able to compute the anonymized reach-
able states of SSATS for up to N = 20 using only about 200 MB memory, although this
took about 2.5 hours to complete.

A.2 MUX-SEM Mutual Exclusion Algorithm

For illustrating the anonymized representation of the state-space, we use the MUX-SEM
mutual exclusion example shown graphically in Figure 9 and as a Passel specification
in Figure 10. Note that this example does not have timing information, but has simple
enough reachable states to be used for illustration purposes. MUX-SEM has one local
variable g[i] with type loc = {idle, start, cs} and one global variable z of Boolean B
type. For N = 3, the product of the types is loc® x B which has 2 ’loc?’| = 54 elements,
which is the number of elements in the state-space of A3, For A3, the reachable states

variable name='qg[i]’ type='L’ // location local variable
2 variable name='x’ type=’boolean’ // global mutex variable
4 location name=’'idle’
location name='start’
6 location name=’'cs’
8 transition from='idle’ to='start’
transition from='start’ to=’cs’
10 grd: x =1
eff: x' =0
12 transition from='cs’ to='idle’
eff: x' =0
14
property: forall i, j (i != j and g[i] = cs) implies (g[j] != cs)
16 initially: forall i (g[i] = idle and x = 1)

Fig. 10. Passel input file specifying automaton template A () for mutual exclusion algorithm
MUX-SEM.

are encoded as the DNF formula:

(¢l =idleng]2] =idleAg[3] =idleAz =1)V 4)

(q[l] =start A g2l =idle Ag[3] =idleAz =1)V Q)

(¢l =idle A g[2] =start Ag[3] =idleAz =1)V 6)

(¢l =idleAg[2] =idle Ag[3] =start Az =1) V (7

(q[1] = start A g[2] =start Ag[3] =idleAz =1) V (g[l] =start Ag[2] =idle Ag[3] =startAz =1)V
(q[1] = idle A q[2] = start A ¢[3] =start Az = 1) V (g[l] = start A g[2] = start A g[3] =start Az =1)V
(g1l =csng2] =idleAg[3] =idleAx =0) V (q[1] =idleAg[2] =csAg[3] =idle Az =0)V

(¢l =idleng[2] =idle Ag[3] =csAx=10) V (q[1] = csAgq[2] =start Ag[3] =idleAz =0)V

(q[1] =start Ag[2] =csAg[3] =idleAnz =0) V (¢[l] =start Ag[2] =idleAg[3] =csAz=0)V

(q[l] = cs A q[2] =start A q[3] =start Az =0) V (g[1] =start Ag[2] =csAg[3] =start Az =0)V
(q[l] =start A g2l =start Ag[3] =csAz=0) V (¢[l] =csA¢g[2] =idle Ag[3] =start Az =0) vV
(¢[1] =idle A g[2] = cs A ¢[3] =start Az =0) V (g[1] = idle A g[2] = start A g[3] = cs Az = 0).

®

A.3 MUX-SEM Anonymized Reachable States and Transition Graph

Figure 13 shows the anonymized reachable states and transition graph for MUX-SEM
(see Figures 9 and 10) for N = 3, and Figure 14 shows the anonymized reachable
states and transition graph for N = 4. The comparison of Figures 13 and 14 illustrates
the crux of the benefit of the anonymized reachability representation and algorithm.
First, observe that no permutations are explicitly enumerated, unlike as was required in
the typical representation shown in Equations 4 through 8. Second, observe that while
the number of anonymized states increases between N = 3 to N = 4, the number
of distinct anonymized classes remains equivalent. This illustrates that for computing
the anonymized reachable states for N = 3 and N = 4 requires simply counting the
additional number of automata with states satisfying each of the anonymized classes’

formulas. This result coincides with related notions of bounding the diameter of the
reachability graph. In the implementation in Passel, all of these data structures are im-
plemented as hash sets, so the number of formulas does not increase between computing
the reachable states of N = 3 to larger N. Finally, by inspecting the anonymized reach-
able states in Figures 13 and 14, we may conclude that MUX-SEM satisfies the mutual
exclusion property:

Vi,j €N : (i#j A qli] =cs) = qlj] #cs.

This is because, for any anonymized state S € AnonReach, any class C € S.Classes
where the class formula g[i] = cs is satisfied has at most count 1, meaning there is at
most one automaton in the critical section cs.

10000.00
1000.00

100.00

0®
.‘.

1 26 51 76 101 126 151 176 201 226 251 276
0.10 j

—e—Passel Time (s) =e=Phaver Time (s) =« Poly. (Passel Time (s))

Fig. 11. Anonymized reachability runtime comparison of PHAVer and Passel for MUX-SEM. The
vertical axis scale is logarithmic in seconds (s). The horizontal axis is the number of automata N.
This illustrates scaling to hundreds of automata.

For N = 11, PHAVer runs out of memory, so comparisons beyond this value are not
possible. As shown in Figure 8, for N = 10, PHAVer uses over 2.5 GB memory and
completes in about 45 minutes, while Passel uses more than order of magnitude less
memory at about 70 MB and nearly three orders of magnitude less runtime at about 3.5
seconds.® Because of the anonymized representation of the state-space, Passel is able to
compute the reachable states of N = 30 in under ten seconds (Figure 7) using about 70
MB memory (Figure 8). As shown in Figures 11 and 12, Passel is able to easily scale
to hundreds of automata for MUX-SEM with modest runtime and memory usage.

8 Note that Z3 has some nondeterministic heuristics built-in that cause some of the memory
fluctuations seen in the Passel results.

10000.00

1000.00

100.00
CIED0000000- - @rcoeen @cececn @ cenes P @cesene @ coene @reoeen @eeenen @®coene .

10.00

1.00
1 26 51 76 101 126 151 176 201 226 251 276
—e—Passel Memory (MB) —e—Phaver Memory (MB)
----- Poly. (Passel Memory (MB))

Fig.12. Anonymized reachability memory usage comparison of PHAVer and Passel for
MUX-SEM. The vertical axis scale is logarithmic in megabytes (MB). The horizontal axis is
the number of automata N. This illustrates scaling to hundreds of automata.

<=

(and (>=h 1)
(<=hN)
(= (q h) idle)
(= (q'|) start)
=x X))

forall ((j Int))
(or (not (and (>= j 1) (<= jN) (not (= ih))) (= (. j) (q'[)

)
(=(qh)ecs)
(= (q) idle)
(= xX)
(forall (j Int))
(or (not (and (>=j 1) (<= N) (not (= jh)) (= (@ J) (la'[)))

(and (>=h 1)
(==hN

(and (>=h 1)
(==hN)
(= (q by idle)
(= ('| by start)
(= x X
(forall (j Int))
(or (not (and (>=j 1) (== i N) (not (= jh)))) (= (q j) (lq'[)

(forall ((j Int))
(or (not (and (>=j 1) (<= jN) (not (= jh))) (= (@ j) (0’|)

(and G=h 1)
(<=hN)
(= (g h)es)
(= (g’ b) idle)
=x K
(forall (G Int
(or (not (and (>= j 1) (<= j N) (not

(q1i) idle) (= x 0)>
))=

)

i = @) (91

(and (>=h 1)
<=hN)

(and (>=h 1) (and (>=h 1)
(<=hN) (==hN)
(= (q h) idle) (= (q h) start) (= (q h) idle)
(= (g h) start) (Z(l\q’\ \h!\fS) (= (q'l b start)
o e i
(forall ((j Int))
(or (not (and (>=j 1) (<= N) (not (= j) (= (@ J) (19'[)))

(=x X))
(forall (G Int))
(or (not (and (>=j 1) (<= j N) (not (= j)))) (= (@) (la'| M)

(forall (Int))
(or (not (and (>=j 1) (<= j N) (not (= j) (= (@ J) (4|)

@nd G=h1)
(==hN

<1, (and (= (q) idle) (= x 0)>

<1, (and (= (q i start) (= x 0))>

<1, (and (= (q i) cs) (= x 0))>

(and (= h 1)
=hN)

h) idle)

(lq'| h) start)
X

(and (>=h 1)
(<=hN)

(= (q h) start)
= (q'|h) es)
(= x x| = x X))
(fc (forall ((j Int))
(or (not (and (>=j 1) (<= jN) (not (= jh)))) (= (q) ('l M)

forall ((j Int))
(or (not (and (>=j 1) (<= i N) (not (= jh)))) (= (a j) ('))))

Fig. 13. Graphical view of the MUX-SEM mutual exclusion algorithm reachable states and transition graph for N = 3. This graphical representation is
computed automatically by Passel after constructing the reachable states and transition graph on-the-fly using the method described in Section 4.

(and (= h 1)
(<=hN)

(= (q by idke
(= Galh) sy

(foral (¢

(or (not (and

(d = 1)

@de=hD)
¢ m Iv)»mr')
rine)

m
& (\q \m start)
K

(U
(foral (¢)

&
(foral
(Ur(nulhlﬂdP’J‘H"JNNHUH JWN) = @) a1 M)

(ma oD
)

“@hes)
¢ i il Wiy
= X \X H

(foral

o
(= (q h) idl
S
—Kx\
1 Ty
(or (not (and (>=j 1) (< w\l)(um(M) = @) (a1

©
(foral (o
(or (not (and (= j 1) (< ’JNH()O!(JWN E @) M)

()\nd e

<1, (@nd (= (q) idie) (= X 0))>
nd (= (q) start) (= x 0))>
<1, (and (= (@) ¢5) (= X 0))>

%
S ity

’Xxh

(foral

(or (not (and (=} 1) (== NHVI(“‘:JY\N) (=@ (@1
and o= 1)
N)

- 4q) k)

ine —anm(JWN) = @) o)

(ur(nulhmdP’J‘H"JNNUU\Y JWN) = @) a1 M)

(or (not (and (= j 1) (<= N\ mm«:mnn (=@ (1

(forall (G Int))
(or (not (and (== j 1) (<= N) (not (=) (= (@) (9'|)

(and (== h 1)

«
(= (g) idle)

(= (' start)

(forall
(nr(m)lum\("J”("’JM("N(J) = (@) (a1)

and (= (@) i

(and (== h 1)
(<=hN)

i sary
= ('l h))
(=x
(foral (I
(or (not (and (= j 1) (<= N) (not (= b)) (= (@) (9’|)

(forall (In

)
(or (not (and (== jH(\ N (ot (=) (= (@) (a1 M)

<2, (and (= (q) idle) (= x 0))>
<1 (and (- (@) staro) (= x 0)>
<1, (and (= (q i) e5) (= x 0))>

(@nd (>=h 1)
N)

(= (q 1) ille)
= (4’| start)
= x|

forall ((Int))
(or (not (and (>= 1) (<= N) (not (=) = (@ j) (4" D)

(and (>=h 1)
(==hN)

o H
il () Int
(or (not (and (> m«< \NN"N(D) @ a1

@nd =t 1)

@ h) m)

& m\mu-\m

X Ix')

Goral (I
(or (not (and (>=j 1) (<= j N) (not (= b)) (= (@) (4'| D)

Fig. 14. Graphical view of the MUX-SEM mutual exclusion algorithm reachable states and transition graph for N = 4. This graphical representation is
computed automatically by Passel after constructing the reachable states and transition graph on-the-fly using the method described in Section 4.

parameter name='1lb’ type='real’ value = 1.0 // minimum rate

2 parameter name='ub’ type=’'real’ value = 2.0 // maximum rate
parameter name='B’ type='real’ value = 5.0 // guard constant
4
automaton name=' MUX-INDEX-RECT’
6 variable name='g[i]’ type='L’ // location local variable
variable name=’'x[i]’ type='real’ // continuous local variable
8 variable name=’'g’ type=’index’ // global lock variable
10 location name='rem’
frate: x[i]_dot >= 1lb and x[i]_dot <= ub
12 location name='try’
frate: x[i]_dot >= 1lb and x[i]_dot <= ub
14 location name='cs’
frate: x[i]_dot >= 1b and x[i]_dot <= ub
16
transition from='rem’ to='try’
18 grd: g = L and x[i] >= B
eff: ¢ = i and x[i]’ = 0.0
20 transition from='try’ to='cs’
grd: g = i and x[i] >= 2xB
22 eff: x[i]’ =0
transition from=’'cs’ to=’rem’
R4 grd: x[i] >= 3xB
eff: x[i]’ = 0
26 property: forall i, j (i !'= j and g[i] = cs) implies (g[j] != cs)
initially: forall i (g[i] = rem and x[i] = 0 and g = 1)

Fig. 15. Passel input file specifying automaton template A () for mutual exclusion algorithm
MUX-INDEX-RECT.

A4 MUX-INDEX-RECT Mutual Exclusion Algorithm: Example with
Anonymized Reachable State-Space Cardinality Independent of N

This section describes a simple timed mutual exclusion algorithm that has an anonymized
reach set that is independent of N. The hybrid automaton template A(N,) specifying
the MUX-INDEX-RECT example appears in Figure 15 and graphically in Figure 16.
Specifically, the number of anonymized classes in ReachForms does not increase as a
function of N. Additionally, for any S € AnonReach, the sum of the class counts of S is
1, N, or N—1. This is in contrast to the MUX-SEM example described previously, which
has some S with counts in {1, ..., N}, so their runtimes and memory usages increase
as a function of N. Due to this state-space size independence from N, our experiments
have been successful for computing the reachable states for compositions of millions of
automata.

For MUX-INDEX-RECT, PHAVer runs out of memory for N = 8. As shown in Fig-
ures 7 and 8, for N = 7, PHAVer uses over 1.3 GB memory and completes in over
3 hours, while Passel uses over an order of magnitude less memory at about 70 MB
and nearly four orders of magnitude less runtime at about three seconds. Because of
the anonymized representation of the state-space, Passel is able to compute the reach-
able states of N = 30 in a few seconds using about 70 MB memory, and Passel is able
to easily scale to thousands of automata for MUX-INDEX-RECT. This is because the
number of elements in the anonymized state-space representation does not grow as a
function of N.

grd: z[i] > 3B
eff: g = LA
=0

start —

grd:g= L Az[i{] > B
eff:g' =ina'=0 grd: g =i Az[i] > 2B
eff:2' =0

Fig. 16. MUX-INDEX-RECT mutual exclusion algorithm of Figure 15.

A.5 Nondeterministic Finite-State Automaton.

The next example specifies a simple nondeterministic finite-state automaton example
with 5 states and 10 transitions. This artificial example is created purely to demonstrate
the strength the anonymized state representation. For the NFA example, PHAVer is only
able to compute the reachable states up to N = 6 before running out of memory due to
its representation of all the permutations of reachable states. Even at N = 6, PHAVer
uses about 600 MB memory and required over 3 minutes to compute the reachable
states. While A°® only has 5° = 15625 states, PHAVer utilizes an inefficient explicit-
state representation. In comparison, the anonymized reachability method implemented
in Passel computed the reachable states for the same example in an order of magnitude
less time (about 20 seconds) and used about an order of magnitude less memory (about
75 MB). Furthermore, Passel was able to compute the set of reachable states up to
N = 30 in a little over an hour, while using about 220 MB memory. The memory usage
for the NFA example shown in Figure 8 illustrates the strength of Passel’s anonymized
reachability method. While Passel initially uses much more memory than PHAVer—
in part due to loading a variety of libraries, including the API to Z3—its scaling as a
function of N is far superior. This is highlighted by Passel using about a third of the
memory at N = 30 of 220 MB compared to PHAVer’s usage of over 600 MB memory
at N = 6, even though the problem size in terms of N is 5 times larger.

A.6 MUX-SEM-RA Mutual Exclusion

The MUX-SEM-RA mutual exclusion example shown in Figure 17 is just like the
MUX-SEM purely discrete mutual exclusion example, except it includes a single con-
tinuous local variable for each automaton .A(¢). This example illustrates the additional
memory and runtime requirements between a discrete and hybrid automaton, as the

effig =1 Az[i] =0

start —

Fig.17. MUX-SEM-RA mutual exclusion algorithm for automaton .A(%) for illustrating the com-
putation of continuous successors in the anonymized state-space representation.

formulas required to represent the continuous state variables are more complex. As
we can see from Figure 7, at N = 6, PHAVer requires approximately an order of
magnitude more runtime to compute the reachable states of MUX-SEM compared to
MUX-SEM-RA, at slightly less than one second and around eight seconds seconds,
respectively. In comparison, for N = 6, Passel requires about four seconds to com-
pute the reach set of MUX-SEM and around eight seconds to compute the reach set of
MUX-SEM-RA, a growth of a factor of two, compared to PHAVer’s order of magnitude
growth. The memory comparison in Figure 8 is even better for Passel, even at N = 30
is using under 100 MB memory for MUX-SEM-RA, while PHAVer ran out of memory
at N = 9, where it used about 700 MB memory.

	Anonymized Reachability of Rectangular Hybrid Automata Networks

