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Abstract
This benchmark suite is composed of nine examples of large-scale lin-

ear systems, ranging in dimensionality in the tens to the low thousands.
The benchmarks are derived from diverse fields such as civil engineering
and robotics, and are based on similar existing test sets for model-order
reduction algorithms in control and numerical analysis. Each example is
provided in the SpaceEx XML model format as single-mode hybrid au-
tomaton and are compatible with the HyST model transformation tool to
support analysis in other verification tools. Some preliminary reachability
analysis results for some of the smaller examples (on the order of tens of
dimensions) are presented using SpaceEx.
Category: academic Difficulty: low through challenge

1 Context and Origins

Symbolic state-space analysis has shown advantages in safety verification of con-
tinuous and hybrid systems in which the essential task is computing the set of
reachable states symbolically with an iterative algorithm [1]. The main challenge
of this approach is state-space explosion, which roughly is that the complexity
of computation grows exponentially with the system dimensionality [2]. To im-
plement efficiently symbolic reachability algorithms, significant effort has been
invested in finding appropriate representations for the set of states that supports
efficient operations used in the iterative computation. From classical polyhe-
dral representations which are used in hybrid systems model checkers such as
HyTech [3,4] and d/dt [5], more efficient representations such as zonotopes [6–8]
and support functions [9,10] have been proposed and integrated in tools such as
CORA and SpaceEx that use these state-of-the-art representations for analysis
of hybrid systems with linear dynamics.
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No. Benchmark Type n m p
1 Motor control system (MCS) LTI 8 2 2
2 Building model (BM) [12] LTI 48 1 1
3 International space station (ISS) [12] LTI 270 3 3
4 Partial differential equation (Pde) [12] LTI 84 1 1
5 FOM [12] LTI 1006 1 1
6 Modified nodal analysis model 1 [12](MNA-1) LTI 578 9 9
7 Modified nodal analysis model 5 [12](MNA-5) LTI 10913 9 9
8 Heat equation [12] LTI 200 1 1
9 Clamped beam model [12] LTI 348 1 1

Table 2.1: Benchmarks for the order-reduction abstraction method in which
n is dimension of the system; m and p are the number of inputs and outputs
respectively.

In spite of these advances, reachability analysis of large-scale systems with
hundreds to thousands of dimensions is still infeasible even for linear time invari-
ant (LTI) systems, i.e., without any discrete switching behavior. It is important
to develop new techniques and tools that can be used to verify the safety of
such high-dimensional systems, which usually exist in a broad range of fields
and applications such as control systems, biological systems, analog circuits,
and multi-agent systems.

To help test and evaluate reachability analysis methods and tools to en-
able verification of high-dimensional systems, we construct a set of benchmarks
that are essentially LTI systems arising from model order reduction [11, 12].
These benchmarks, which are models of practical systems in different fields,
have dimensions varying from ten to thousands. Each benchmark is given in
the SpaceEx format as a single-mode hybrid automaton and can be easily trans-
formed to other formats such as dReach [13] or Flow* [14] using the HyST model
transformation tool [15]. Reachability analysis of some of the small and medium-
size benchmarks (i.e., < 50 dimensions ) are presented. These benchmarks may
be effective to test and evaluate the scalability of verification approaches when
dealing with large-size benchmarks (i.e. > 50 dimensions).

2 Brief descriptions

Since most of benchmarks are high-dimensional, their dynamic equations cannot
be presented in detail in this paper. We refer readers to [11, 12] for for further
details and derivations, as well as our provided supplementary material.1 The

1The benchmarks are available online, http://verivital.com/hyst/benchmark-large-
scale/
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Benchmark
Initial set of states Input constraint Safety specification
X0 = {x0 ∈ Rn| lb(i) ≤ x0(i) ≤ ub(i), 1 ≤ i ≤ n} u = [u1, · · · , um]T y = [y1, · · · , yp]T

Motor con-
trol system

lb(i) = ub(i) = 0, i = 2, 3, 4, 6, 7, 8, u1 ∈ [0.16, 0.3], unsafe region:
lb(2) = 0.002, ub(2) = 0.0025, u2 ∈ [0.2, 0.4]. 0.35 ≤ y1 ≤ 0.4,
lb(3) = 0.001, ub(3) = 0.0015. 0.45 ≤ y2 ≤ 0.6.

Building
model

lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10,
u1 ∈ [0.8, 1].

unsafe region:
lb(25) = −0.0001, ub(25) = 0.0001, 0.006 < y1

lb(i) = ub(i) = 0, 11 ≤ i ≤ 48, i 6= 25.

Partial dif-
ferential
equation

lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 64
u1 ∈ [0.5, 1].

safe region:
lb(i) = 0.001, ub(i) = 0.0015, 64 ≤ i ≤ 80, y1 ≤ 12
lb(i) = −0.002, ub(i) = −0.0015, 81 ≤ i ≤ 84.

International
space station lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 270.

u1 ∈ [0, 0.1], Safe region:
u2 ∈ [0.8, 1], −0.0005 ≤ y3 ≤ 0.0005
u3 ∈ [0.9, 1].

FOM
lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 400

u1 ∈ [−1, 1].
safe region:

lb(i) = 0.0002, ub(i) = 0.00025, 401 ≤ i ≤ 800, y1 ≤ 45
lb(i) = 0, ub(i) = 0, 801 ≤ i ≤ 1006.

MNA-1
lb(i) = 0.001, ub(i) = 0.0015, 1 ≤ i ≤ 2 ui = 0.1, 1 ≤ i ≤ 5, unsafe region:
lb(i) = 0, ub(i) = 0, 3 ≤ i ≤ 578, ui = 0.2, 6 ≤ i ≤ 9. y1 > 0.5

MNA-5
lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10 ui = 0.1, 1 ≤ i ≤ 5, safe region:
lb(i) = 0, ub(i) = 0, 11 ≤ i ≤ 10913, ui = 0.2, 6 ≤ i ≤ 9. y1 ≤ 0.2, y1 ≤ 0.15

Heat equa-
tion

lb(i) = 0.6, ub(i) = 0.625, 1 ≤ i ≤ 2
u1 ∈ [−0.5, 0.5].

safe region:
lb(i) = 0, ub(i) = 0, 3 ≤ i ≤ 200, y1 ≤ 0.1

Clamped
beam model

lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 300
u1 ∈ [0.2, 0.8].

unsafe region:
lb(i) = 0.0015, ub(i) = 0.002, 301 ≤ i ≤ 348, y1 > 1000

Table 2.2: Initial states, input constraints and safety specification for the out-
puts of the benchmarks.

general form of the dynamics is:
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t),

where x(t) ∈ Rn is the system state, y(t) ∈ Rp is the system output, u(t) is the
control input, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

In this section, we introduce briefly these benchmarks. Table 2.1 summarizes
names, number of dimensions, and numbers of inputs and outputs of the bench-
marks. The initial set of states, input constraints, and safety specifications of
the benchmarks are given in Table 2.2.

Motor control system. The motor control system benchmark includes two
motors that are controlled synchronously. Each motor has a local controller that
is designed using pole placement method [16] to control the motor to satisfy: 1)
the overshoot of the motor position is less than 16%; 2) setting time is less than
0.04 seconds; 3) No steady-state error, even in the presence of a step disturbance
input.
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Building model. The building model is a model of the Los Angeles University
Hospital with 8 floors, each of which has 3 degrees of freedom [11]. This system
has 48 state variables in which we are mostly interested in the twenty-fifth state
x25(t), which is the motion of the first coordinate. The twenty-fifth state is
the interested output of the building model and should not reach to the unsafe
region given in Table 2.2.

Partial differential equation. The partial differential equation (PDE) is
given by

∂x

∂t
= ∂2x

∂z2 + ∂2x

∂v2 + 20∂x
∂v
− 180x+ f(v, z)u(t),

where x is a function of time t, vertical position v and horizontal position z.
This problem lies on a square domain defined by two opposite points (0, 0)
and (1, 1). The function x(t, v, z) is zero on the boundaries of the square. A
state-space equation of dimension of N = nvnz of this PDE can be given by
discretizing with centered difference approximation on a grid of nv × nz points.
The input vector corresponding to f(v, z) is composed of random elements while
the output vector of the system is equated to the input vector for simplicity.
The state-space model of PDE covered in this paper corresponds to the case of
nv = 7 and nz = 12.

International Space Station (ISS). The ISS state-space model presented
in this paper is a structural model of component 1R (Russian service module)
of the International Space Station. It has 270 state variables with three inputs
and three outputs.

FOM. This is state-space model of a dynamical system with following matri-
ces:

A =


A1

A2

A3

A4

 , A1 =

 −1 100
−100 −1

 , A2 =

 −1 200
−200 −1

 ,

A3 =

 −1 400
−400 −1

 , A4 =


−1

−2
. . .

−1000

 ,
BT = C = [10 · · · 10︸ ︷︷ ︸

6

1 · · · 1︸ ︷︷ ︸
1000

].
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Modified nodal analysis model. The following Modified Nodal Analysis
(MNA) equation is constituted from connecting voltage sources to the ports of
a multiport:

EẋnA = Axn +Bup,

ip = Cxn,

in which ip and up are the port currents and voltages vectors respectively and

A =

−N −G
GT 0

 , E =

L 0
0 H

 , xn =

v
i

 ,
where v and i are variables of the MNA including node votages, inductor and
voltage source currents, respectively. The matrices −A and E represent the
conductance and susceptance matrices. The matrices −N , L andH contains the
stamps for resistors, capacitors and inductors, respectively. Matrix G consists
of 1, −1 and 0, which describe the current variables in Kirchhoff’s Current Law
(KCL) equation. The input matrix B and output matrix C satisfy B = CT .
We give two MNA models with different number of state variables in the paper.

Heat equation. The state-space model of Heat equation is giving by dis-
cretizing the following equation:

PDE
∂

∂t
T (x, t) = α

∂2

∂x2T (x, t) + u(x, t), x ∈ (0, 1); t > 0,

BCs T (0, t) = 0 = T (1, t), t > 0,
IC T (x, 0) = 0, x ∈ (0, 1).


where T (x, t) represents the temperature field on a thin rod and u(x, t) is the
heat source.

Clamped beam model. The state-space clamped beam model, which is ob-
tained by spatial discretization of an appropriate partial different equation, has
348 states, one input and one output in which the input represents the force
applied to the structure and the output is the displacement.

3 Reachability analysis

Since all benchmarks are LTI systems, there are different tools that can be used
to analyze the safety of these benchmarks such as SpaceEx [10], CORA [17],
CheckMake [18], DReach [13], and Flow* [14]. We specify each benchmark in
the SpaceEx format as a single-mode hybrid automaton, which can be easily
transformed to other formats using HyST [15].

Table 3.1 presents a preliminary overview of the computation cost of time-
bounded reachability analysis for the benchmarks using SpaceEx. These exper-
iments are conducted on a personal computer with the following configurations:
Intel (R) Core(TM) i7-2677M CPU at 1.80GHz, 4GB RAM, and 64-bit Win-
dow 7. The reachability analysis is conducted in a bounded time range [0, 20s].
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Benchmark
LGG STC

Time(s) Time(s)
Motor control system 27 N/A
Building model 893 N/A
Partial differential equation OOT N/A
International space station OOT N/A
FOM OOT N/A
MNA-1 OOT N/A
MNA-5 OOT N/A
Heat equation OOT N/A
Clamped beam model OOT N/A

Table 3.1: Computation cost for verification of the benchmarks using
SpaceEx [10] with two scenarios LGG [19] and STC [20]. The terms of “N/A”
and “OOT” mean “not applicable” and “out of time”.

The SpaceEx scenarios tested are LGG [19] and STC [20]. The sampling time
is selected as 0.001 for all benchmarks. We note that the sampling time and
time horizon should be selected appropriately based on the dynamics of spe-
cific system, for example, using the rule of thumb to pick the sampling time
based on the inverse of the maximum eigenvalue. Intuitively, this would mean
to pick large sampling times for slow dynamics and small sampling times for
fast dynamics. Thus, while our preliminary results as shown in Table 3.1 indi-
cate some examples are infeasible for analysis with SpaceEx, it is possible that
a more careful selection of parameters would enable analysis of these systems,
and we hope other researchers will be interested to try these examples. We set
the upper limit for SpaceEx running time as two hours, and an experiment is
said to be out of time (OOT) if we can not get the result after two hours. The
reason the STC scenario did not produce results is due to the use of outputs as
invariant conditions (i.e., y = Cx) with nondeterministic dynamics, which does
not seem to be supported when using STC.

Next, we present briefly the reachability analysis of some small and medium-
size benchmarks (i.e., less than 50 dimensions).

Motor control system. Figure 3.1 depicts the reachable set of the interested
states of the motor control system. As shown in the figure, the reachable set
does not reach to the unsafe region. Thus, we can conclude that the system
is safe in the bounded time [0, 20s]. A stronger conclusion about the safety of
the motor control system may be given by considering unbounded time safety
verification.

Building model. Figure 3.2 depicts the reachable set of the this state of
the building model. As can be seen from the figure, the reachable states of
the output do not intersect the unsafe region. Thus, we can conclude that the
system is safe in the bounded time [0, 20s]. Similar to the above motor control
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Figure 3.1: Reachable set of inter-
ested outputs of the motor control
system (in [0, 20s]) and its corre-
sponding unsafe region (the red re-
gion). The reachable set of inter-
ested outputs do not reach the un-
safe region, thus the system is safe
(in a bounded time interval [0, 20s]).
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Figure 3.2: Reachable set of inter-
ested output of the building model
system (in [0, 20s]) and its corre-
sponding unsafe region (the region
above the red line). The reachable
set of interested output do not reach
the unsafe region, thus the system
is safe (in a bounded time interval
[0, 20s]).

system, a stronger conclusion about the safety of the building model may be
given by considering unbounded time safety verification.

4 Outlook

Overall, we present in this paper a set benchmarks for purely continuous linear
systems (i.e., LTI systems), modeled as single-mode hybrid automata in the
SpaceEx model format. The benchmarks range in dimensionality from tens to
thousands of dimensions, and come from many different domains. The continu-
ous and hybrid verification community may use these benchmarks for comparing
methods and tools, especially with respect to continuous post operator bench-
marking for systems with a high number of dimensions. In ongoing and future
work, we intend to introduce additional high-dimensional benchmarks with both
piecewise affine dynamics and continuous dynamics including ones originally en-
coded as differential algebraic equations (DAEs), and are also investigating for-
malization of order-reduction methods as sound abstractions using approximate
bisimulation relations [21].
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