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Abstract. This paper proposes novel reachability algorithms for both
exact (sound and complete) and over-approximation (sound) analysis of
deep neural networks (DNNs). The approach uses star sets as a sym-
bolic representation of sets of states, which are known in short as stars
and provide an effective representation of high-dimensional polytopes.
Our star-based reachability algorithms can be applied to several prob-
lems in analyzing the robustness of machine learning methods, such as
safety and robustness verification of DNNs. The star-based reachability
algorithms are implemented in a software prototype called the neural net-
work verification (NNV) tool that is publicly available for evaluation and
comparison. Our experiments show that when verifying ACAS Xu neural
networks on a multi-core platform, our exact reachability algorithm is on
average about 19 times faster than Reluplex, a satisfiability modulo the-
ory (SMT)-based approach. Furthermore, our approach can visualize the
precise behavior of DNNs because the reachable states are computed in
the method. Notably, in the case that a DNN violates a safety property,
the exact reachability algorithm can construct a complete set of coun-
terexamples. Our star-based over-approximate reachability algorithm is
on average 118 times faster than Reluplex on the verification of prop-
erties for ACAS Xu networks, even without exploiting the parallelism
that comes naturally in our method. Additionally, our over-approximate
reachability is much less conservative than DeepZ and DeepPoly, recent
approaches utilizing zonotopes and other abstract domains that fail to
verify many properties of ACAS Xu networks due to their conservative-
ness. Moreover, our star-based over-approximate reachability algorithm
obtains better robustness bounds in comparison with DeepZ and Deep-
Poly when verifying the robustness of image classification DNNs.

1 Introduction

Deep neural networks (DNNs) have become one of the most powerful techniques
to deal with challenging and complex problems such as image processing [15]
and natural language translation [9, 16] due to its learning ability on large data
sets. Recently, the power of DNNs has inspired a new generation of intelligent
autonomy which makes use of DNNs-based learning enable components such as
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autonomous vehicles [5] and air traffic collision avoidance systems [11]. Although
utilizing DNNs is a promising approach, assuring the safety of autonomous appli-
cations containing neural network components is difficult because DNNs usually
have complex characteristics and behavior that are generally unpredictable. No-
tably, it has been proved that well-trained DNNs may not be robust and are
easily to be fooled by a slight change in the input [18]. Several recent incidents
in autonomous driving (e.g., Tesla and Uber) raises an urgent need for tech-
niques and tools that can formally verify the safety and robustness of DNNs
before utilizing them in safety-critical applications.

Safety verification and robustness certification of DNNs have attracted a
huge attention from different communities such as machine learning [1,2,13,17,
20, 25, 26, 31], formal methods [6, 10, 12, 19, 23, 28–30], and security [7, 24, 25],
and a recent survey of the area is available [27]. Analyzing the behavior of
a DNN can broadly be categorized into exact and over-approximate analyses.
For the exact analysis, the SMT-based [12] and polyhedron-based approaches
[23,28] are notable representatives. For the over-approximate analysis, the mixed-
integer linear program (MILP) [6], interval arithmetic- [24, 25], zonotope- [20],
input partition- [30], linearization- [26], and abstract-domain- [21] based are fast
and efficient approaches. While the over-approximate analysis is usually faster
and more scalable than the exact analysis, it guarantees only the soundness
of the result. In contrast, the exact analysis is usually more time-consuming
and less scalable. However, it guarantees both the soundness and completeness
of the result [12]. Although the over-approximate analysis is fast and scalable,
it is unclear how good the over-approximation is in term of conservativeness
since the exact result is not available for comparison. Importantly, if an over-
approximation approach is too conservative for neural networks with small or
medium sizes, it will potentially produce huge conservative results for DNNs with
a large number of layers and thousands of neurons since the over-approximation
error is accumulated quickly over layers. Therefore, a scalable, exact reachability
analysis is crucial not only for formal verification of DNNs, but also for estimating
the conservativeness of current and up-coming over-approximation approaches.

In this paper, we propose a fast and scalable approach for the exact and
over-approximate reachability analysis of DNN with ReLU activation functions
using the concept of star sets [3], or shortly “star”. Star fits perfectly for the
reachability analysis of DNNs due to its following essential characteristics: 1)
an efficient (exact) representation of large input sets; 2) fast and cheap affine
mapping operations; 3) inexpensive intersections with half-spaces and check-
ing empty. By utilizing star, we avoid the expensive affine mapping operation
in polyhedron-based approach [23] and thus, reduce the verification time sig-
nificantly. Our approach performs reachability analysis for feedforward DNNs
layer-by-layer. In the case of exact analysis, the output reachable set of each
layer is a union of a set of stars. Based on this observation, the star-based exact
reachability algorithm naturally can be designed for efficient execution on multi-
core platforms where each layer can handle multiple input sets at the same time.
In the case of over-approximate analysis, the output reachable set of each layer
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is a single star which can be constructed by doing point-wise over-approximation
of the reachable set at all neurons of the layer.

We evaluate the proposed algorithms in comparison with the polyhedron ap-
proach [23], Reluplex [12], zonotope [20] and abstract domain [21] approaches
on safety verification of the ACAS Xu neural networks [11] and robust certifica-
tion of image classification DNN. The experimental results show that our exact
reachability algorithm can achieve 19 times faster than Reluplex when running
on multi-core platform and > 70 times faster than the polyhedron approach.
Notably, our exact algorithm can visualize the precise behavior of the ACAS
Xu networks and can construct the complete set of counter example inputs in
the case that a safety property is violated. Our over-approximate reachability
algorithm is averagely 118 times faster than Reluplex. It successfully verifies
many safety properties of ACAS Xu networks while the zonotope and abstract
domain approaches fail due to their large over-approximation errors. Our over-
approximate reachability algorithm also provides a better robustness certifica-
tion for image classification DNN in comparison with the zonotope and abstract
domain approaches. In summary, the main contributions of this paper are: 1)
propose novel, fast and scalable methods for the exact and over-approximate
reachability analysis of DNNs; 2) implement the proposed methods in NNV tool-
box that is available online for evaluation and comparison; 3) provide a thorough
evaluation of the new methods via real-world case studies.
2 Preliminaries

2.1 Machine Learning Models and Symbolic Verification Problem
A feed-forward neural network (FNN) consists of an input layer, an output layer,
and multiple hidden layers in which each layer comprises of neurons that are
connected to the neurons of preceding layer labeled using weights. Given an
input vector, the output of an FNN is determined by three components: the
weight matrices Wk, representing the weighted connection between neurons of
two consecutive layers k − 1 and k, the bias vectors bk of each layer, and the
activation function f applied at each layer. Mathematically, the output of a
neuron i is defined by:

yi = f(Σn
j=1ωijxj + bi),

where xj is the jth input of the ith neuron, ωij is the weight from the jth input
to the ith neuron, bi is the bias of the ith neuron. In this paper, we are interested
in FNN with ReLU activation functions defined by ReLU(x) = max(0, x).

Definition 1 (Reachable Set of FNN). Given a bounded convex polyhedron
input set defined as I , {x | Ax ≤ b, x ∈ Rn}, and an k-layers feed-forward
neural network F , {L1, · · · , Lk}, the reachable set F (I) = RLk

of the neural
network F corresponding to the input set I is defined incrementally by:

RL1 , {y1 | y1 = ReLU(W1x+ b1), x ∈ I},
RL2 , {y2 | y2 = ReLU(W2y1 + b2), y1 ∈ RL1},

...

RLk
, {yk | yk = ReLU(Wkyk−1 + bk) yk−1 ∈ RLk−1

},



4 Tran et al.

where Wk and bk are the weight matrix and bias vector of the kth layer Lk,
respectively. The reachable set RLk

contains all outputs of the neural network
corresponding to all input vectors x in the input set I.

Definition 2 (Safety Verification of FNN). Given a k-layers feed-forward
neural network F , and a safety specification S defined as a set of linear con-
straints on the neural network outputs S , {yk | Cyk ≤ d}, the neural network
F is called to be safe corresponding to the input set I, we write F (I) � S, if and
only if RLk

∩¬S = ∅, where RLk
is the reachable set of the neural network with

the input set I, and ¬ is the symbol for logical negation. Otherwise, the neural
network is called to be unsafe F (I) 2 S.

2.2 Generalized Star Sets

Definition 3 ( Generalized Star Set [3]). A generalized star set (or simply
star) Θ is a tuple 〈c, V, P 〉 where c ∈ Rn is the center, V = {v1, v2, · · · , vm} is a
set of m vectors in Rn called basis vectors, and P : Rm → {>,⊥} is a predicate.
The basis vectors are arranged to form the star’s n×m basis matrix. The set of
states represented by the star is given as:

JΘK = {x | x = c+Σm
i=1(αivi) such that P (α1, · · · , αm) = >}. (1)

Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In
this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) , Cα ≤ d where, for p linear constraints, C ∈ Rp×m, α is the vector of
m-variables, i.e., α = [α1, · · · , αm]T , and d ∈ Rp×1. A star is an empty set if
and only if P (α) is empty.

Proposition 1. Any bounded convex polyhedron P , {x | Cx ≤ d, x ∈ Rn} can
be represented as a star.3

Proposition 2. [Affine Mapping of a Star] Given a star set Θ = 〈c, V, P 〉, an
affine mapping of the star Θ with the affine mapping matrix W and offset vector
b defined by Θ̄ = {y | y = Wx + b, x ∈ Θ} is another star with the following
characteristics.

Θ̄ = 〈c̄, V̄ , P̄ 〉, c̄ = Wc+ b, v̄ = {Wv1,Wv2, · · · ,Wvm}, P̄ ≡ P.

Proposition 3 (Star and Half-space Intersection). The intersection of a
star Θ , 〈c, V, P 〉 and a half-space H , {x | Hx ≤ g} is another star with
following characteristics.

Θ̄ = Θ ∩H = 〈c̄, V̄ , P̄ 〉, c̄ = c, V̄ = V, P̄ = P ∧ P ′,
P ′(α) , (H × Vm)α ≤ g −H × c, Vm = [v1 v2 · · · vm].

3 Proofs appear in the appendix of the extended version of this paper [22].
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Fig. 1: An example of a stepReLU operation on a layer with two neurons.

3 Star-Based Reachability Analysis of FNNs

3.1 Exact and Complete Analysis

Since any bounded convex polyhedron can be represented as a star (Proposition
1), we assume the input set I of an FNN is a star set. From Definition 1,
one can see that the reachable set of an FNN is derived layer-by-layer. Since
the affine mapping of a star is also a star (Proposition 2), the core step in
computing the exact reachable set of a layer with a star input set is applying the
ReLU activation function on the star input set, i.e., compute ReLU(Θ), Θ =
〈c, V, P 〉. For a layer L with n neurons, the reachable set of the layer can be
computed by executing a sequence of n stepReLU operations as follows RL =
ReLUn(ReLUn−1(· · ·ReLU1(Θ)))..

The stepReLU operation on the ith neuron, i.e., ReLUi(·), works as follows.
First, the input star set Θ is decomposed into two subsets Θ1 = Θ ∧ xi ≥ 0
and Θ2 = Θ ∧ xi < 0. Note that from Proposition 3, Θ1 and Θ2 are also
stars. Let assume that Θ1 = 〈c, V, P1〉 and Θ2 = 〈c, V, P2〉. Since the later
set has xi < 0, applying the ReLU activation function on the element xi of
the vector x = [x1 · · ·xi xi+1 · · ·xn]T ∈ Θ2 will lead to the new vector x′ =
[x1 x2 · · · 0 xi+1 · · ·xn]T . This procedure is equivalent to mapping Θ2 by the
mapping matrix M = [e1 e2 · · · ei−1 0 ei+1 · · · en]. Also, applying the ReLU
activation function on the element xi of the vector x ∈ Θ1 does not change
the set since we have xi ≥ 0. Consequently, the result of the stepReLU opera-
tion on input set Θ at the ith neuron is a union of two star sets ReLUi(Θ) =
〈c, V, P1〉 ∪ 〈Mc,MV, P2〉. A concrete example of the first stepReLU operation
on a layer with two neurons is depicted in Figure 1.

The number of stepReLU operation can be reduced if we know beforehand
the ranges of all states in the input set. For example, if we know that xi is always
larger than zero, then we have ReLUi(Θ) = Θ, or in other words, we do not need
to execute the stepReLU operation on the ith neuron. Therefore, to minimize the
number of stepReLU operations and the computation time, we first determine
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Algorithm 3.1 Star-based exact reachability analysis for one layer.

Input: I = [Θ1 · · · ΘN ], W , b . star input sets, weight matrix, bias vector

Output: R . exact reachable set

1: procedure R = LayerReach(I,W, b)
2: R = ∅
3: parfor i = 1 : N do . parallel for loop

4: I1 = W ∗Θi + b = 〈Wci + b,WVi, Pi〉
5: R1 = reachReLU(I1), R = R ∪R1

6: end parfor

7: procedure R1 = reachReLU(I1)
8: In = I1
9: [lb, ub] = In.getRange . get ranges of all input variables

10: map = find(lb < 0) . construct computation map

11: m = length(map) . minimized number of stepReach operations

12: for i = 1 : m do
13: In = stepReLU(In,map(i), lb(i), ub(i)) . stepReLU operation

14: R1 = In

15: procedure R̃ = stepReLU(Ĩ , i, lbi, ubi)
16: R̃ = ∅, Ĩ = [Θ̃1 · · · Θ̃k] . intermediate star input and output sets

17: for j = 1 : k do
18: R1 = ∅, M = [e1 e2 · · · ei−1 0 ei+1 · · · en]
19: if lbi ≥ 0 then R1 = Θ̃j = 〈c̃j , Ṽj , P̃j〉
20: if ubi ≤ 0 then R1 = M ∗ Θ̃j = 〈Mc̃j ,MṼj , P̃j〉
21: if lbi < 0 & ubi > 0 then
22: Θ̃′j = Θ̃j ∧ x[i] ≥ 0 = 〈c̃j , Ṽj , P̃

′
j〉, Θ̃′′j = Θ̃j ∧ x[i] < 0 = 〈c̃j , Ṽj , P̃

′′
j 〉

23: R1 = Θ̃′j ∪M ∗ Θ̃′′j
24: R̃ = R̃ ∪R1

the ranges of all states in the input set which can be done efficiently by solving
n-linear programming problems.

The star-based exact reachability algorithm given in Algorithm 3.1 works as
follows. The layer takes the star output sets of the preceding layer as input sets
I = [Θ1, · · · , ΘN ]. The main procedure in the algorithm is layerReach which
processes the input sets I in parallel. On each input element Θi = 〈ci, Vi, Pi〉,
the main procedure maps the element with the layer weight matrix W and bias
vector b which results a new star I1 = 〈Wci + b,WVi, Pi〉. The reachable set
of the layer corresponding to the element Θi is computed by reachReLU sub-
procedure which executes a minimized sequence of stepReLU operations on the
new star I1, i.e., iteratively calls stepReLU sub-procedure. Note that that the
stepReLU sub-procedure is designed to handle multiple star input sets since the
number of star sets may increase after each stepReLU operation.

Lemma 1. The worst-case complexity of the number of stars in the reachable
set of an N -neurons FNN computed by Algorithm 3.1 is O(2N ).

Lemma 2. The worst-case complexity of the number of constraints of a star in
the reachable set of an N -neuron FNN computed by Algorithm 3.1 is O(N).
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Fig. 2: Over-approximation of ReLU functions with different approaches.

Theorem 1 (Verification complexity). Let F be an N -neuron FNN, Θ be a
star set with p linear constraints and m-variables in the predicate, S be a safety
specification with s linear constraints. In the worst case, the safety verification
or falsification of the neural network F (Θ) |= S? is equivalent to solving 2N

feasibility problems in which each has N+p+s linear constraints and m-variables.

Remark 1. Although in the worst-case, the number of stars in the reachable set
of an FNN is 2N , in practice, the actual number of stars is usually much smaller
than the worst-case result which enhances the applicability of the star-based
exact reachability analysis for practical DNNs.

Theorem 2 ( Safety and complete counter input set). Let F be an FNN,
Θ = 〈c, V, P 〉 be a star input set, F (Θ) = ∪ki=1 Θi, Θi = 〈ci, Vi, Pi〉 be the
reachable set of the neural network, and S be a safety specification. Denote Θ̄i =
Θi ∩ ¬S = 〈ci, Vi, P̄i〉, i = 1, · · · , k. The neural network is safe if and only
if P̄i = ∅ for all i. If the neural network violates its safety property, then the
complete counter input set containing all possible inputs in the input set that
lead the neural network to unsafe states is CΘ = ∪ki=1〈c, V, P̄i〉, P̄i 6= ∅.

3.2 Over-approximate Analysis

Although the exact reachability analysis can compute the exact behavior of FNN,
the number of stars grows exponentially with the number of layers and leads to
an increase in computation cost that limits scalability. In this section, we propose
an over-approximation reachability algorithm for FNNs. The main benefit of this
approach is that the reachable set of each layer is only a single star that can be
constructed efficiently by using an over-approximation of the ReLU activation
function at all neurons in the layer. Importantly, our star-based over-approximate
reachability algorithm is much less conservative than the zonotope-based [20] and
abstract domain [21] based approaches in the way of approximating the ReLU
activation function, shown in Figure 2. The zonotope-based approach [20] over-
approximates the ReLU activation function by a minimal parallelogram while the
abstract-domain approach [21] over-approximates the ReLU activation function
by a triangle. Our star-based approach also over-approximates the ReLU activa-
tion function with a triangle as in the abstract-domain approach. However, the
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Algorithm 3.2 Star-based over-approximate reachability analysis for one layer.

Input: I = Θ = 〈c, V, P 〉, W , b . star input set, weight matrix, bias vector

Output: R . over-approximate reachable set

1: procedure R = ApproxLayerReach(I,W, b)
2: I1 = W ∗Θ + b = 〈Wc+ b,WV, P 〉
3: In = I1
4: for i = 1 : n do . n is the number of neurons of the layer

5: In = approxStepReLU(In, i) . ith approximate-stepReLU operation

6: R1 = In

7: procedure R̃ = approxStepReLU(Ĩ , i)
8: Ĩ = Θ̃ = 〈c̃, Ṽ , P̃ 〉
9: [li, ui] = Θ̃.getRange(i) . range of x[i], i.e., li ≤ x[i] ≤ ui

10: M = [e1 e2 · · · ei−1 0 ei+1 · · · en]
11: if li ≥ 0 then R̃ = Θ̃ = 〈c̃, Ṽ , P̃ 〉
12: if ui ≤ 0 then R̃ = M ∗ Θ̃ = 〈Mc̃,MṼ , P̃ 〉
13: if li < 0 & ui > 0 then
14: P̃ (α) , C̃α ≤ d̃, α = [α1, α2, · · · , αm]T . input set’s predicate

15: α′ = [α1, · · · , αm, αm+1]T . new variable αm+1

16: C1 = [0 0 · · · 0 -1] ∈ R1×m+1, d1 = 0 . αm+1 ≥ 0⇔ C1α
′ ≤ d1

17: C2 = [ ˜V [i, :] -1] ∈ R1×m+1, d2 = −c̃[i] . αm+1 ≥ x[i]⇔ C2α
′ ≤ d2

18: C3 = [ −ui
ui−li

× ˜V [i, :] 1], d3 = uili
ui−li

×(1−c̃[i]) . αm+1 ≤
ui(x[i]−li)

ui−li
⇔ C3α

′ ≤ d3

19: C0 = [C̃ 0m×1], d0 = d̃
20: C′ = [C0;C1;C2;C3], d′ = [d0; d1; d2; d3]
21: P ′(α′) , C′α′ ≤ d′ . output set’s predicate

22: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = ReLU(x[i]) = αm+1

23: R̃ = 〈c′, V ′, P ′〉

abstract-domain approach only uses lower bound and upper bound constraints
for the output yi = ReLU(xi) to avoid the state space explosion [21], for exam-
ple, in Figure 2, these constraints are yi ≥ 0, yi ≤ ui(xi− li)/(ui− li). To obtain
a tighter over-approximation, our approach uses three constraints for the output
yi instead. The over-approximation rule for a single neuron is given as follows,

yi = xi if li ≥ 0

yi = 0 if ui ≤ 0

yi ≥ 0, yi ≤ ui(xi−li)
ui−li , yi ≥ xi if li < 0 and ui > 0

where li and ui is the lower and upper bounds of xi.
Similar to the exact approach, the over-approximate reachable set of a Layer

with n neurons can be computed by executing a sequence of n approximate-
stepReLU operations performing the above over-approximation rule. The over-
approximate reachability algorithm for a single layer of FNN using star set
given in Algorithm 3.2 works as follows. Given a star input set Θ, the algo-
rithm computes the affine mapping of the input set using the layer’s weight
matrix and bias vector. The resulting star set is the input of a sequence of n
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Algorithm 3.3 Reachability analysis for a FNN.

Input: I = Θ = 〈c, V, P 〉, L = [L1 L2 · · · Lk], scheme . star input set, network’s layers,

reachabiltiy scheme

Output: R . reachable set

1: procedure R = reach(I, L, scheme)
2: In = I
3: for i = 1 : k do . k is the number of layers on the network

4: if scheme = exact then In = Li.LayerReach(In)
5: else if scheme = approx then In = Li.ApproxLayerReach(In)

6: R = In

approximate−stepReLU operations. An approximate-stepReLU operation first
computes the lower and upper bounds of the state variable x[i] w.r.t the ith

neuron. If the lower bound is not negative (line 11), the approximate-stepReLU
operation returns a new intermediate reachable set which is exactly the same
as its input set. If the upper bound is not positive (line 12), the approximate-
stepReLU operation returns a new intermediate reachable set which is the same
as its input set except the ith state variable is zero. If the lower bound is negative
and the upper bound is positive (line 13), the approximate-stepReLU operation
introduces a new variable αm+1 to capture the over-approximation of ReLU
function at the ith neuron. As a result, the obtained intermediate reachable
set has one more variable and three more linear constraints in the predicate in
comparison with the corresponding input set. From this observation, we can see
that in the worst case, the over-approximate reachability algorithm will obtain
a reachable set with N +m0 variables and 3N +n0 constraints in the predicate,
where m0, n0 respectively are the number of variables and linear constraints of
the predicate of the input set and N is the total number of neurons of the FNN.

3.3 Reachability Algorithm for FNNs

The reachability analysis of a FNN is done layer-by-layer in which the output set
of the previous layer is the input set of the next layer. The reachability algorithm
for a FNN is summarized in Algorithm 3.3.

4 Evaluation

In this section, we evaluate the proposed star-based reachability algorithms in
comparison to existing state-of-the-art approaches including exact (sound and
complete) SMT-based (Reluplex [12]) and polyhedron-based [23] approaches, as
well as over-approximate approaches, such as those using zonotopes [20] and
abstract domains [21]. To clarify intuitively the benefit of our approach, we
re-implement the zonotope- and abstract-domain based approaches in our tool
called NNV. This allows the visualization of the over-approximate reachable
set of these approaches. The evaluation and comparison are done by verifying
safety of the ACAS Xu DNNs [11] and the robustness of image classification
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Prop. ID

Exact methods Over-approximation methods

Res.
Rel Poly Star Zonotope Abstract-Domain Star

V T V T V T r1ES r2ES Res. V T rZ Res. V T rAD Res. V T rAS

φ1 N1 1 safe 5986 TO 1481.2 4.04x — safe 0.07 85514x safe 6.22 962.4x safe 13.79 434.1x

φ2

N1 3 safe 1102 TO 77.3 14.3x > 47x UN 0.06 18367x UN 6.3 174.9x UN 6.01 183.4x

N2 1 safe 1173 TO 51.57 22.8x > 70x UN 0.062 18919x UN 5.72 205.1x safe 5.91 198.5x

N2 2 safe 634 TO 35.8 17.7x > 101x UN 0.084 7548x UN 5.83 108.8x safe 5.8 109.3x

N2 3 safe 1014 TO 36.1 28.1x > 100x UN 0.073 13890x UN 5.89 172.2x UN 5.79 175.7x

N5 1 safe 1097 TO 17.76 61.8x > 202x UN 0.081 13543x UN 5.85 187.5x UN 5.76 190.5x

φ3

N1 5 safe 393 1520.29 33.39 11.8x 45.5x UN 0.0796 4937x UN 6.1 64.4x safe 5.89 66.7x

N2 2 safe 451 TO 43.66 10.3x > 83x UN 0.056 8054x UN 5.57 81x safe 5.66 79.7x

N2 3 safe 293 2759 37.23 7.8x 74.1x UN 0.08 3663x UN 6.04 74.7x safe 5.66 79.7x

N2 8 safe 653 1152.6 31.04 21x 37.1x safe 0.102 6401x safe 6.36 102.7x safe 7.47 87.4x

N2 9 safe 61 233 6.33 9.63x 36.8x safe 0.065 938.5x safe 5.76 10.6x safe 5.88 10.4x

N3 7 safe 357 1115.6 14 25.5x 79.7x UN 0.085 4200x safe 5.88 60.7x safe 6 59.5x

N3 8 safe 149 770 15.2 9.8x 50.7x UN 0.08 1862x UN 5.53 26.9x safe 5.83 25.6x

N3 9 safe 715 1664.4 40.9 17.5x 40.7x UN 0.076 9408x UN 6.25 114.4x safe 6.13 116.6x

N4 9 safe 489 1098.7 22.2 22x 49.49x safe 0.049 9980x safe 5.3 92.3x safe 5.57 87.8x

N5 1 safe 585 1005.3 18.43 31.74x 54.5x UN 0.069 8479x UN 5.8 100.9x safe 5.83 100.3x

N5 7 safe 42 275.1 7.69 5.5x 35.8x safe 0.054 778x safe 5.5 7.6x safe 5.54 7.6x

Average time improvement ≈ 18.9x > 70x ≈ 12734x ≈ 150x ≈ 118.4x

Table 1: Safety verification results of ACAS Xu networks. Notation: TO is ‘Time-
out’, Rel states for ‘Reluplex’, Poly is the Polyhedron method, UN states for
unknown (due to over-approximation error), V T is the verification time in sec-
onds, and r1ES , r

2
ES are the verification time improvement of the exact, star-based

method compared with Reluplex and the polyhedron-based methods; rZ , rAD
and rAS respectively are the verification time improvement of the zonotope-,
abstract domain- and over-approximate star-based methods compared with Re-
luplex. The computation time limitation for polyhedron-based method (run on
Amazon cloud) was set to be 1 hour while for Reluplex, it was set at 24 hours.

DNN against adversarial attacks. All results presented in this section and their
corresponding scripts are available online4.

4.1 Safety Verification for ACAS Xu DNNs

The ACAS Xu networks are DNN-based advisory controllers that map the sensor
measurements to advisories in the Airborne Collision Avoidance System X [11].
It consists of 45 DNNs which are trained to replace the traditional memory-
consuming lookup table. Each DNN denoted by Nx y has 5 inputs, 5 outputs,
and 6 hidden layers of 50 neurons. The detail about ACAS Xu networks and their
safety properties are given in the appendix [22]. The experiments in this case
study are done using Amazon Web Services Elastic Computing Cloud (EC2),
on a powerful m5a.24xlarge instance with 96 cores and 384 GB of memory.
The verification results are presented in Table 1. We used 90 cores for the exact

4 https://github.com/verivital/nnv/tree/fm2019/nnv/examples/Submission/FM2019
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Fig. 3: Verification time reduction with parallel computing and complete counter
input set construction.

reachability analysis of the ACAS Xu networks using the polyhedron- and star-
based approaches, and only 1 core for the over-approximate reachability analysis
approaches.

Verification results and timing performance. Safety verification using
star-based reachability algorithms consists of two major steps. The first step
constructs the whole reachable set of the networks. The second step checks the
intersection of the constructed reachable set with the unsafe region. The verifi-
cation time (VT) in our approach is the sum of the reachable set computation
time (RT) and the safety checking time (ST). The reachable set computation
time dominates (averagely 95% of) the verification time in all cases and the
verification time varies for different properties. The detail of the reachable set
computation time and the safety checking time can be found in the verification
results.

Exact star-based method. The experimental results show that the exact
star-based approach is on average > 70 times faster than the polyhedron-based
approach and 18.9 times faster than Reluplex when using parallel computing.
Impressively, it can even achieve 61.8 faster than Reluplex when verifying prop-
erty φ2 on N5 1 network. This improvement comes from the fact that star set
that is very efficient in affine mapping and intersection with half-spaces which are
crucial operations for reachable set computation and safety checking. Therefore,
the exact star-based method is much more efficient than the polyhedron-based
approach [23]. In addition, the exact star-based algorithm is well-designed and
optimized (i.e., minimize the number of stepReLU operations) for efficiently
running on multi-core platforms while Reluplex does not exploit the power of
parallel-computing. Figure 3a describes the benefits of parallel computing. The
figure shows that when a single core is used for a verification task, our approach
takes 790.07 seconds which is a little bit slower than Reluplex with 653 seconds.
However, our verification time drops quickly to 80.45 seconds, which is 8 times
faster than Reluplex, when we use 10 cores for the computation.
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Zonotope-based method [20]. The experimental results show that the
over-approximate, zonotope-based method is significantly faster than the exact
methods. In some cases, it can verify the safety of the networks with less than
0.1 seconds, for example, the zonotope-based method successfully verifies prop-
erty φ3 on N5 7 network in 0.054 seconds and the corresponding reachable set
is depicted in Figure 4a. Although the zonotope-based method is time-efficient
(on average 12734 times faster than Reluplex), it is unable to verify the safety
of many networks due to its huge over-approximation error, i.e., if the over-
approximate reachable set reaches an unsafe region, we do not know whether
or not the actual reachable set reaches the unsafe region. For example, Figure
4b describes the reachable set obtained by the zonotope-based method for N3 8

network w.r.t property φ3. As shown in the figure, the obtained reachable set is
too conservative and can not be used for safety verification of the network. The
main reason that makes the zonotope approach fast is that, to do reachability
analysis, we need to compute the lower and upper bounds of each state x[i] of
all neurons in each layer. This information can be obtained straightforwardly in
the zonotope method while in the other approaches, i.e., abstract-domain and
star-based approaches, this is equivalent to solving n linear optimization prob-
lems where n is the number of neurons at that layer. The time for solving these
optimization problems increase over layers since the number of constraints in the
reachable set increases. Therefore, despite the a large over-approximation error,
the zonotope-based method is time-efficient when dealing with large and deep
neural networks.

Abstract-domain based method [21] The over-approximation method
using abstract-domain is 150 times faster than Reluplex on average. It is also
much less conservative than the zonotope-based method as can be seen from
Figure 4. However, the reachable set computed by the abstract-domain based
method is still too conservative, which makes this approach unable to verify the
safety properties of many ACAS Xu networks.

Over-approximate star-based method. The experiments show that our
over-approximate star-based approach can obtain tight reachable sets for many
networks compared to the exact sets. Therefore, our over-approximate approach
successfully verifies safety properties of most of ACAS Xu networks. Notably, it
is on average 118.4 times faster than Reluplex. Impressively, it is 434 times faster
than Reluplex when verifying property φ1 on N1 1 network. In comparison with
the zonotope and abstract-domain approaches, our method is timing-comparable
with the abstract-domain method and slower than the zonotope method. How-
ever, our results is much less conservative than those obtained by the zonotope
and abstract-domain methods which are shown in Figure 4. This makes our ap-
proach applicable for safety verification of many ACAS Xu networks where the
zonotope and abstract-domain methods cannot verify.

Benefits of computing the reachable set. The reachable set computed
in our NNV tool are useful for intuitively checking the safety properties of the
network. For example, Figure 4a describes the behaviors of N5 7 network cor-
responding to property φ3 requiring that the output COC is not the minimal
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(a) Reachable sets of N5 7 network w.r.t property φ3 with different methods. All meth-
ods successfully verify the property.

(b) Reachable sets of N3 8 network w.r.t property φ3 with different methods. The
zonotope (used in DeepZ [20]) and abstract-domain (used in DeepPoly [21]) methods
cannot verify the property due to large over-approximation error.

Fig. 4: Conservativeness of the reachable sets obtained by different methods.

score. From the figure, one can see that the COC is not the minimal score and
thus, property φ3 holds on N5 7 network. Importantly, as shown in the figure, via
visualization, one can intuitively observe the conservativeness of different over-
approximation approaches in comparison to the exact ones which is impossible
if we use ERAN, a C-Python implementation of the zonotope and abstract-
domain-based methods. Last but not least, the reachable set is useful in the case
that we need to verify a set of safety properties corresponding to the same input
set. In this case, once the reachable set is obtained, it can be re-used to check
different safety properties without rerunning the whole verification procedure as
Reluplex does, and thus helps saving a significant amount of time.

Complete counter example input set construction. Another strong
advantage of our approach in comparison with other existing approaches is,
in the case that a neural network violates its safety specification, our exact,
star-based method can construct a complete counter input set that leads the
neural network to the unsafe region. The complete counter input set can be
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Net Parameters Tol
δmax

Zonotope Approximate-Star Abstract-Domain Exact-Star

N1 k=5, N = 140 0.0001 0.0046 0.0048 0.0046 ≥0.0058

N2 k=5, N = 250 0.0001 0.0087 0.0101 0.0095 TimeOut

N3 k=2, N = 1000 0.0001 0.0072 0.0089 0.0084 TimeOut

N4 k = 1, N = 2000 0.0001 0.0027 0.0027 0.0027 TimeOut

N5 k = 1, N = 4000 0.0001 0.0034 0.0034 0.0034 TimeOut

Table 2: Maximum robustness values (δmax) of image classification networks
with different methods in which k is the number of hidden layers of the network,
N is the total number of neurons, Tol is the tolerance error in searching.

used as a adversarial input generator [4, 8] for robust training of the network.
We note that finding a single counter input falsifying a safety property of a
neural network can be done efficiently using only random simulations. However,
constructing a complete counter input set that contains all counter inputs is very
challenging because of the non-linearity of a neural network. To the best of our
knowledge, our exact star-based approach is the only approach that can solve
this problem. For example, assume that we want to check the following property
φ′3 , ¬(COC ≥ 15.8 ∧ StrongRight ≤ 15.09) on N2 8 network with the same
input constraints as in property φ3. Using the available reachable set of N2 8

network, we can verify that the above property φ′3 is violated in which 60 stars
in 421 stars of the reachable set reach the unsafe region. Using Theorem 2, we
can construct a complete counter input set which is a union of 60 stars in 0.9893
seconds. This counter input set depicted in Figure 3b is a part of the input set
that contains all counter inputs that make the neural network unsafe.

4.2 Maximum Robustness Certification of Image Classification
DNNs

Robustness certification of DNNs becomes more an more important as many
safety-critical applications using image classification DNNs can be fooled eas-
ily by slightly perturbing a correctly classified input. A network is said to be
δ-locally-robust at input point x if for every x′ such that ‖x− x′‖∞ ≤ δ, the
network assigns the same label to x and x′. In this case study, instead of proving
the robustness of a network corresponding to a given robustness certification
δ, we focus on finding the maximum robustness certification value δmax that
a verification method can provide a robustness guarantee for the network. We
investigate this interesting problem on a set of image classification DNN with
different architectures trained (with an accuracy of 98%) using the well-known
MNIST data set consisting of 60000 images of handwritten digits with a reso-
lution of 28× 28 pixels [14]. The trained networks have 784 inputs and a single
output with expected value from 0 to 9. We find the maximum robustness verifi-
cation value δmax for the networks on an image of digit one with the assumption
that there is a δmax-bounded disturbance modifying the (normalized) values of
the input vector x at all pixels of the image, i.e., |x[i] − x′[i]| ≤ δmax. The
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result are presented in Table 2. We note that the polyhedron and Reluplex ap-
proaches are not applicable for these networks because they cannot deal with
high dimensional input space. The table shows that our approximate star ap-
proach produces larger upper bounds of the robustness values of the networks
with many layers. For single layer networks, our approach gives the same re-
sults as the zonotope [20] and the abstract domain [21] methods. The exact-star
method can prove that the network N1 is robust with the bounded disturbance
δ = 0.0058. When δ > 0.0058, we ran into the “out of memory” issue in paral-
lel computation since the number of the reachable sets becomes too large. The
exact star method reaches timeout (set as 1 hour) when finding the maximum
robustness value for the other networks.

5 Conclusion and Future Work

We have proposed two reachability analysis algorithms for DNNs using star sets,
one that is exact (sound and complete) but has scalability challenges and one
that over-approximates (sound) with better scalability. The exact algorithm can
compute and visualize the exact behaviors of DNNs. The exact method is more
efficient than standard polyhedra approaches, and faster than SMT-based ap-
proaches when running on multi-core platforms. The over-approximate algorithm
is much faster than the exact one, and notably, it is much less conservative than
recent zonotope and abstract-domain based approaches. Our algorithms are ap-
plicable for real world applications as shown in the safety verification of ACAS
Xu DNNs and robustness certification of image classification DNNs. In future
work, we are extending the proposed methods for convolutional neural networks
(CNN) and recurrent neural networks (RNN), as well as improving scalability
for other types of activation functions such as tanh and sigmoid.
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