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Abstract. Safety-critical distributed cyber-physical systems (CPSs) have
been found in a wide range of applications. Notably, they have displayed
a great deal of utility in intelligent transportation, where autonomous
vehicles communicate and cooperate with each other via a high-speed
communication network. Such systems require an ability to identify ma-
neuvers in real-time that cause dangerous circumstances and ensure the
implementation always meets safety-critical requirements. In this paper,
we propose a real-time decentralized safety verification approach for a
distributed multi-agent CPS with the underlying assumption that all
agents are time-synchronized with a low degree of error. In the pro-
posed approach, each agent periodically computes its local reachable set
and exchanges this reachable set with the other agents with the goal
of verifying the system safety. Our method, implemented in Java, takes
advantages of the timing information and the reachable set information
that are available in the exchanged messages to reason about the safety
of the whole system in a decentralized manner. Any particular agent can
also perform local safety verification tasks based on their local clocks
by analyzing the messages it receives. We applied the proposed method
to verify, in real-time, the safety properties of a group of quadcopters
performing a distributed search mission.

1 Introduction

The emergence of 5G technology has inspired a massive wave of the research
and development in science and technology in the era of IoT where the commu-
nication between computing devices has become significantly faster with lower
latency and power consumption. The power of this modern communication tech-
nology influences and benefits all aspects of Cyber-Physical Systems (CPSs) such
as smart grids, smart homes, intelligent transportation and smart cities. In par-
ticular, the study of autonomous vehicles has become an increasingly popular
research field in both academic and industrial transportation applications. Au-
tomotive crashes pose significant financial and life-threatening risks, and there
is an urgent need for advanced and scalable methods that can efficiently verify
a distributed system of autonomous vehicles.



Over the last two decades, although many methods have been developed
to conduct reachability analysis and safety verification of CPS, such as the ap-
proaches proposed in [1,4,10,11,13,15,18], applying these techniques to real-time
distributed CPS remains a big challenge. This is due to the fact that, 1) all ex-
isting techniques have intensive computation costs and are usually too slow to
be used in a real-time manner and, 2) these techniques target the safety verifica-
tion of a single CPS, and therefore they naturally cannot be applied efficiently to
a distributed CPS where clock mismatches and communication between agents
(i.e., individual systems) are essential concerns. Since the future autonomous
vehicles systems will work distributively involving effective communication be-
tween each agent, there is an urgent need for an approach that can provide formal
guarantees of the safety of distributed CPS in real-time. More importantly, the
safety information should be defined based on the agents local clocks to allow
these agents to perform “intelligent actions” to escape from the upcoming dan-
gerous circumstances. For example, if an agent A knows based on its local clock
that it will collide with an agent B in the next 5 seconds, it should perform an
action such as stopping or quickly finding a safe path to avoid the collision.

In this paper, we propose a decentralized real-time safety verification ap-
proach for a distributed CPS with multiple agents. We are particularly interested
in two types of safety properties. The first one is a local safety property which
specifies the local constraints of the agent operation. For example, each agent is
only allowed to move within a specific region, does not hit any obstacles, and
its velocity needs to be limited to specific range. This type of property does not
require the information of other agents and can be verified locally at run-time.
The second safety property is a global safety property in which we want to check
if there are any potential collision occurring between the agents.

Our decentralized real-time safety verification approach works as follows.
Each agent locally and periodically computes the local reachable set from the
current local time to the next T seconds, and then encodes and broadcasts its
reachable set information to the others via a communication network. When the
agent receives a reachable set message, it immediately decodes the message to
read the reachable set information of the sender, and then performs peer-to-peer
collision checking based on its current state and the reachable set of the sender.
Additionally, the local safety property of the agent is verified simultaneously
with the reachable set computation process at run-time. The proposed verifi-
cation approach is based on an underlying assumption that is, all agents are
time-synchronized to some level of accuracy. This assumption is reasonable as it
can be achieved by using existing time synchronization protocols such as the Net-
work Time Protocol (NTP). Our approach has successfully verified in real-time
the local safety properties and collision occurrences for a group of quadcopters
conducting a search mission.



2 Problem Formulation

In this paper, we consider a distributed CPS with N agents that can communi-
cate with each other via an asynchronous communication channel.

Communication Model The communication between agents is implemented by
the actions of sending and receiving messages over an asynchronous communi-
cation channel. We formally model this communication model as a single au-
tomaton, Channel, which stores the set of in-flight messages that have been sent,
but are yet to be delivered. When an agent sends a message m, it invokes a
send(m) action. This action adds m to the in-flight set. At any arbitrary time,
the Channel chooses a message in the in-flight set to either delivers it to its re-
cipient or removes it from the set. All messages are assumed to be unique and
each message contains its sender and recipient identities. Let M be the set of
all possible messages used in communication between agents. The sending and
receiving messages by agent i are denoted by Mi,∗ and M∗,i, respectively.

Agent Model The ith agent is modeled as a hybrid automaton [12,22] defined by
the tuple 〈Ai = Vi, Ai,Di, Ti〉, where:

a) Vi is a set of variables consisting of the following: i) a set of continuous vari-
ables Xi including a special variable clki which records the agent’s local time,
and ii) a set of discrete variables Yi including the special variable msghisti
that records all sent and received messages. A valuation vi is a function that
associates each vi ∈ Vi to a value in its type. We write val(Vi) for the set of
all possible valuations of Vi. We abuse the notion of vi to denote a state of

Ai, which is a valuation of all variables in Vi. The set Qi
∆
= val(Vi) is called

the set of states.

b) Ai is a set of actions consisting of the following subsets: i) a set {sendi(m) |m ∈
Mi,∗} of send actions (i.e., output actions), ii) a set {receivei(m) | m ∈M∗,i}
of receive actions (i.e., input actions), and iii) a set Hi of other, ordinary
actions.

c) Di ⊆ val(Vi) × Ai × val(Vi) is called the set of transitions. For a transition

(vi, ai,v
′
i) ∈ Di, we write vi

ai→ v′i in short. i) If ai = sendi(m) or receivei(m),
then all the components of vi and v′i are identical except that m is added to
msghist in v′i. That is, the agent’s other states remain the same on message
sends and receives. Furthermore, for every state vi and every receive action
ai, there must exist a v′i such that vi

ai→ v′i, i.e., the automaton must have
well-defined behavior for receiving any message in any state. ii) If ai ∈ Hi,
then vi.msghist = v′i.msghist.

d) Ti is a collection of trajectories for Xi. Each trajectory of Xi is a function
mapping an interval of time [0, t], t ≥ 0 to val(Vi), following a flow rate
that specifies how a real variable xi ∈ Xi evolving over time. We denote the
duration of a trajectory as τdur, which is the right end-point of the interval
t.



Agent Semantics The behavior of each agent can be defined based on the concept
of an execution which is a particular run of the agent. Given an initial state v0

i ,
an execution αi of an agent Ai is a sequence of states starting from v0

i , defined
as αi = v0

i ,v
1
i , . . ., and for each index j in the sequence, the state update from

vji to vj+1
i is either a transition or trajectory. A state vji is reachable if there

exists an executing that ends in vji . We denote Reach(Ai) as the reachable set
of agent Ai.

System Model The formal model of the complete system, denoted as System, is
a network of hybrid automata that is obtained by parallel composing the agent’s

models and the communication channel. Formally, we can write, System
∆
=

A1‖ . . .AN‖Channel. Informally, the agent Ai and the communication channel
Channel are synchronized through sending and receiving actions. When the agent
Ai sends a message m ∈ Mi,j to the agent Aj , it triggers the sendi(m) action.
At the same time, this action is synchronized in the Channel automaton by
putting the message m in the in-flight set. After that, the Channel will trigger
(non-deterministically) the receivej(m) action. This action is synchronized in the
agent Aj by putting the message m into the msghistj .

In this paper, we investigate two real-time safety verification problems for
distributed cyber-physical systems as defined in the following.

Problem 1 (Local safety verification in real-time). The real-time local safety ver-
ification problem is to compute online the reachable set Reach(Ai) of the agent
and verify if it violates the local safety property, i.e., checking Reach(Ai)∩Ui =
∅?, where Ui , Cixi ≤ di, xi ∈ Xi is the unsafe set of the agent.

Problem 2 (Decentralized real-time collision verification). The decentralized real-
time collision verification problem is to reason in real-time whether an agent Ai
will collide with other agents from its current local time tic to the computable,
safe time instance in the future Tsafe based on i) the clock mismatches, and
ii) the exchanging reachable set messages between agents. Formally, we require
that ∀ tic ≤ t ≤ Tsafe, dij(t) ≥ l, where dij(t) is the distance between agents
Ai and Aj at the time t of the agent Ai local clock, and l is the allowable safe
distance between agents.

3 Real-Time Local Safety Verification

The first important step in our approach is, each agent Ai computes forwardly its
reachable set of states from the current local time ti to the next (ti+T ) seconds
which is defined byRi[ti, ti+T ]. Since there are many variables used in the agent
modeling that are irrelevant in safety verification, we only need to compute the
reachable set of state that is related to the agent’s physical dynamics (so called
as motion dynamics) which is defined by a nonlinear ODE ẋi = f(xi, ui), where
xi ∈ Rn is state vector and ui ∈ Rm is the control input vector. The agent can
switch from one mode to the another mode via discrete transitions, and in each



mode, the control law may be different. When the agent computes its reachable
set, the only information it needs are its current set of states xi(t

i) and the
current control input ui(t

i). It should be clarified that although the control law
may be different among modes, the control signal ui is updated with the same
control period T ic . Consequently, ui is a constant vector in each control period.

Assuming that the agent’s current time is tij = j × Tc, using its local sensors
and GPS, we have the current state of the agent xi. Note that the local sensors
and the provided GPS can only provide the information of interest to some
accuracy, therefore the actual state of the agent is in a set xi ∈ Ii. The control
signal ui is computed based on the state xi and a reference signal, e.g., a set
point denoting where the agent needs to go to, and then computed control signal
is applied to the actuator to control the motion of the agent. From the current
set of states Ii and the control signal ui, we can compute the forward reachable
set of the agent for the next tij+T seconds. This reachable set computation needs

to be completed after an amount of time T iruntime < T ic because if T iruntime ≥ T ic ,
a new ui will be updated. The control period T ic is chosen based on the agent’s
motion dynamics, and thus to control an agent with fast dynamics, the control
period T ic needs to be sufficiently small. This is the source of the requirement
that the allowable run-time for reachable set computation be small.

To compute the reachable set of an agent in real-time, we use the well-known
face-lifting method [3, 6] and a hyper-rectangle to represent the reachable set.
This method is useful for short-time reachability analysis of real-time systems.
It allows users to define an allowable run-time T iruntime, and has no dynamic
data structures, recursion, and does not depend on complex external libraries as
in other reachability analysis methods. More importantly, the accuracy of the
reachable set computation can be iteratively improved based on the remaining
allowable run-time.

Algorithm 3.1 describes the real-time reachability analysis for one agent. The
Algorithm works as follows. The time period [ti, ti + T ] is divided by M steps.
The reach time step is defined by hi = T/M . Using the reach time step and
the current set Ii, the face-lifting method performs a single-face-lifting opera-
tion. The results of this step are a new reachable set and a remaining reach
time T iremainReachTime < T . This step is iteratively called until the reachable
set for the whole time period of interest [ti, ti + T ] is constructed completely,
i.e., the remaining reach time is equal to zero. Interestingly, with the reach time
step size hi defined above, the face-lifting algorithm may be finished quickly
after an amount of time which is smaller than the allowable run-time T iruntime
specified by user, i.e., there is still an amount of time called remaining run
time T iremainRunTime < T iruntime that is available for us to recall the face-lifting
algorithm with a smaller reach time step size, for example, we can recall the
face-lifting algorithm with a new reach time step hi/2. By doing this, the con-
servativeness of the reachable set can be iteratively improved. The core step of
face-lifting method is the single-face-lifting operation. We refer the readers to [3]
for further detail. As mentioned earlier, the local safety property of each agent
can be verified at run-time simultaneously with the reachable set computation



Algorithm 3.1 Real-time reachability analysis for agent Ai.

Input: Ii, ui, t
i, T , hi, T

i
runtime, Ui

Output: Ri[t
i, ti + T ], safe = true or safe = uncertain

1: procedure Initialization
2: step = hi % Reach time step
3: T i

1 = T i
runtime % Remaining run-time

4: procedure Reachability Analysis
5: while (T i

1 > 0) do
6: CR = Ii % Current reachable set
7: safe = true
8: T i

2 = T % Remaining reach time
9: while T i

2 > 0 do
10: % Do Single Face Lifting
11: R, T ′ = SFL(CR, step, T i

2 , ui)
12: CR = R % Update reach set
13: T i

2 = T ′ % Update remaining reach time
14: if (CR ∩ Ui 6= ∅) then: safe = uncertain

15: Ri[t
i, ti + T ] = CR

16: % Update remaining runtime
17: T i

1 = T i
1 − (Ai.currentT ime()− ti)

18: if T i
1 ≤ 0 then break

19: else
20: step = hi/2 % Reduce reach time step

21: return Ri[t
i, ti + T ] = CR, safe

process. Precisely, let Ui , Cixi ≤ di be the unsafe region of the ith agent, the
agent is said to be safe from ti to ti + t ≤ ti + T if Ri[ti, ti + t] ∩ Ui = ∅. Since
the reachable set Ri[ti, ti + t] is given by the face-lifting method at run-time,
the local safety verification problem for each agent can be solved at run-time.
Since the Algorithm 3.1 computes an over-approximation of the reachable set of
each agent in a short time interval, it guarantees the soundness of the result as
described in the following lemma.

Lemma 1. [3, 6] The real-time reachability analysis algorithm is sound, i.e.,
the computed reachable set contains all possible trajectories of agent Ai from ti

to ti + T .

4 Decentralized Real-Time Collision Verification

Our collision verification scheme is performed based on the exchanged reachable
set messages between agents. For every control period Tc, each agent executes
the real-time reachability analysis algorithm to check if it is locally safe and to
obtain its current reachable set with respect to its current control input. When
the current reachable set is available, the agent encodes the reachable set in a
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Fig. 1: Timeline for reachable set computing, encoding, transferring, decoding
and collision checking.

message and then broadcasts this message to its cooperative agents and listens to
the upcoming messages sent from these agents. When a reachable set message
arrives, the agent immediately decodes the message to construct the current
reachable set of the sender and then performs peer-to-peer collision detection.
The process of computing, encoding, transferring, decoding of the reachable set
along with collision checking is illustrated in Figure 1 based on the agent’s local
clock.

Let tirs, t
i
e, t

i
tf , tid, and tic respectively be the instants that we compute,

encode, transfer, decode the reachable set and do collision checking on the agent
Ai. Note that these time instants are based on the agent Ai’s local clock. The
actual run-times are defined as follows.

τ irs = tie − tirs,% reachablet set computation time,

τ ie = titf − tie,% encoding time,

τ itf ≈ t
j
d − t

i
tf ,% transferring time,

τ id = tic − tid,% decoding time.

Note that we do not know the exact transfer time τ itf since it depends on
two different local time clocks. The above transfer time formula describes its
approximate value when neglecting the mismatch between the two local clocks.
The actual reachable set computation time is close to the allowable run-time
chosen by user, i.e., τ irs ≈ T iruntime. We will see later that the encoding time
and decoding time are fairly small in comparison with the transferring time, i.e.,
τ ie ≈ τ id � τ itf . All of these run-times provide useful information for selecting an
appropriate control period Tc for an agent. However, for collision checking pur-
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pose, we only need to consider the time instants that an agent starts computing
reachable set tirs and checking collision tic.

A reachable set message contains three pieces of information: the reachable
set which is a list of intervals, the time period (based on the local clock) in
which this reachable set is valid, i.e., the start time tirs and the end time tirs +T
and the time instant that this message is sent. Based on the timing information
of the reachable set and the time-synchronization errors, an agent can examine
whether or not a received reachable set contains information about the future
behavior of the sent agent which is useful for checking collision. The usefulness
of the reachable sets used in collision checking is defined as follows.

Definition 1 (Useful reachable sets). Let δi and δj respectively be the time-
synchronization errors of agent Ai and Aj in comparison with the virtual global
time t, i.e, t − δi ≤ ti ≤ t + δi and t − δj ≤ tj ≤ t + δj, where ti and tj are
current local times of Ai and Aj respectively. The reachable sets Ri[tirs, tirs + T ]
and Rj [tjrs, tjrs + T ] of the agent Aj that are available at the agent Ai at time tic
are useful for checking collision between Ai and Aj if:

tic < tjrs + T − δi − δj ,
tic < tirs + T.

(1)

Assume that we are at a time instant where the agent Ai checks if a collision
occurs. This means that the current local time is tic. Note that agent Ai and
Aj are synchronized to the global time with errors δi and δj respectively. The
reachable set Rj [tjrs, tjrs +T ] is useful if it contains information about the future
behavior of agent Aj under the view of the agent Ai based on its local clock. This
can be guaranteed if we have: tjrs + T ≥ tirs − δj + T > tic + δi. Additionally, the
current reachablet set of agent Ai contains information about its future behavior
if tic < tirs + T as depicted in Figure 2. We can see that if tic > tjrs + T + δi + δj ,
then the reachable set of Aj contains a past information, and thus it is useless
for checking collision. One interesting case is when tjrs + T − δi − δj < tic <
tjrs + T + δi + δj . In this case, we do not know whether the received reachable
set is useful or not.

Remark 1. We note that the proposed approach does not rely on the concept
of Lamport happens-before relation [17] to compute the local reachable set of



Algorithm 4.2 Decentralized Real-Time Collision Verification at Agent Ai.

Input: l, % safe distance between agents
Output: collision, Tsafe % collision flag and safe time interval in the future

1: procedure Peer-to-Peer Collision Detection
2: if new message Rj [t

j
rs, t

j
rs + T ] arrive then

3: decode message
4: tic = Ai.current time() % current time
5: tirs = Ri.t

i
rs % current reachable set start time

6: if tic < tjrs + T − δi − δj and tic < tirs + T then % check usefulness
7: compute possible minimum distance dmin between two agents
8: if dmin > l then
9: Collision = false

10: Tsafe = min(tjrs + T − δi − δj , tirs + T )
11: else
12: Collision = uncertain, Tsafe = [ ]

13: store the message

each agent. If the agent could not receive reachable messages from others until
a requested time-stamp expires, it still calculates the local reachable set based
on its current state and the state information of other agents in the messages it
received previously. In other words, our method does not require the reachable
set of each agent to be computed corresponding to the ordering of the events
(sending or receiving a message) in the system, but only relies on the local clock
period and the time-synchronization errors between agents. Such implementation
ensures that the computation process can be accomplished in real-time, and is
not affected by the message transmission delay.

The peer-to-peer collision checking procedure depicted in Algorithm 4.2 works
as follows: when a new reachable set message arrives, the receiving agent decodes
the message and checks the usefulness of the received reachable set and its cur-
rent reachable set. Then, the agent combines its current reachable set and the
received reachable set to compute the minimum possible distance between two
agents. If the distance is larger than an allowable threshold l, there is no collision
between two agents in some known time interval in the future, i.e., Tsafe.

Lemma 2. The decentralized real-time collision verification algorithm is sound.

Proof. From Lemma 1, we know that the received reachable set Rj [tjrs, tjrs +
T ] contains all possible trajectories of the agent Aj from tjrs to tjrs + T . Also,
the current reachable set of the agent Ai, Ri[tirs, tirs + T ], contains all possible
trajectories of the agent from tirs to tirs + T . If those reachable sets are useful,
then they contains all possible trajectories of two agents from tic to sometime
Tsafe = min(tjrs +T − δi− δj , tirs +T ) in the future based on the agent Ai clock.
Therefore, the minimum distance dmin between two agents computed from two
reachable sets is the smallest distance among all possible distances in the time
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Fig. 3: Distributed Search Application Using Quadcopters.

interval [tic, Tsafe]. Consequently, the collision free guarantee is sound in the time
interval [tic, Tsafe].

5 Case study

The decentralized real-time safety verification for distributed CPS proposed in
this paper is implemented in Java as a package called drreach. This package is
currently integrated as a library in StarL, which is a novel platform-independent
framework for programming reliable distributed robotics applications on An-
droid [19]. StarL is specifically suitable for controlling a distributed network
of robots over WiFi since it provides many useful functions and sophisticated
algorithms for distributed applications. In our approach, we use the reliable com-
munication network of StarL which is assumed to be asynchronous and peer-to-
peer. There may be message dropouts and transmission delays; however, every
message that an agent tries to send is eventually delivered with some time guar-
antees. All experimental results of our approach are reproducible and available
online at: http://www.verivital.com/rtreach/.

We evaluate the proposed approach via a distributed search application using
quadcopters3 in which each quadcopter executes its search mission provided by
users as a list of way-points depicted in Figure 3. These quadcopters follow
the way-points to search for some specific objects. For safety reasons, they are
required to work only in a specific region defined by users. In this case study, the
quadcopters are controlled to operate at the same constant altitude. It has been
shown from the experiments that the proposed approach is promisingly scalable
as it works well for a different number of quadcopters. We choose to present in
this section the experimental results for the distributed search application with
eight quadcopters.

3 A video recording is available at: https://youtu.be/YC_7BChsIf0

http://www.verivital.com/rtreach/
https://youtu.be/YC_7BChsIf0


The first step in our approach is locally computing the reachable set of each
quadcopter using face-lifting method. The quadcopter has nonlinear motion dy-
namics given in Equation 2 in which θ, φ, and ψ are the pitch, roll, and yaw
angles, f = Σ4

i=1Ti is the sum of the propeller forces, m is the mass of the
quadcopter and g = 9.81m/s2 is the gravitational acceleration constant. As the
quadcopter is set to operate on a constant altitude, we have z̈ = 0 which yields
the following constraint: f = mg

cos(θ)cos(φ) . Let vx and vy be the velocities of a

quadcopter along with x- and y- axes. Using the constraint on the total force,
the motion dynamics of the quadcopter can be rewritten as a 4-dimensional
nonlinear ODE as depicted in Equation 3.

ẍ =
f

m
(sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ)),

ÿ =
f

m
(sin(ψ)sin(θ)cos(φ)− sin(φ)cos(ψ)),

z̈ =
f

m
cos(θ)cos(φ)− g,

(2)

ẋ = vx,

v̇x = gtan(θ),

ẏ = vy,

v̇y = g
tan(φ)

cos(θ)
.

(3)

A PID controller is designed to control the quadcopter to move from its
current position to desired way-points. Details about the controller parameters
can be found in the available source code. The PID controller has a control pe-
riod of Tc = 200 milliseconds. In every control period, the control inputs pitch
(θ) and roll (φ) are computed based on the current positions of the quadcopter
and the current target position (i.e., the current way-point it needs to go). Us-
ing the control inputs, the current positions and velocities given from GPS and
the motion dynamics of the quadcopter, the real-time reachable set computa-
tion algorithm (Algorithm 3.1) is executed inside the controller. This algorithm
computes the reachable set of a quadcopter from its current local time to the
next T = 2 seconds. The allowable run-time for this algorithm is Truntime = 10
milliseconds. The local safety property is verified by the real-time reachable set
computation algorithm at run-time. The computed reachable set is then en-
coded and sent to another quadcopter. When a reachable set message arrives,
the quadcopter decodes the message to reconstruct the current reachable set of
the sender. The GPS error is assumed to be 2%. The time-synchronization error
between the quadcopters is δ = 3 milliseconds. We want to verify in real-time:
1) local safety property for each quadcopter; 2) collision occurrence. The local
safety property is defined by vx ≤ 500, i.e., the maximum allowable velocities
along the x-axis of two arbitrary quadcopters are not larger than 500m/s. The
collision is checked using the minimum allowable distance between two arbitrary
quadcopters dmin = 100.

Figure 4 presents a sample of a sequence of events happening in the dis-
tributed search application. One can see that each quadcopter can determine
based on its local clocks if there is no collision to some known time in the fu-
ture. In addition, the local safety property can also be verified at run-time. For
example, in the figure, the quadcopter 1 receives a reachable set message from
the quadcopter 0 which is valid from 17 : 29 : 49.075 to 17 : 29 : 51.074 of
the quadcopter 0’s clock. After decoding this message, taking into account the



Fig. 4: A sample of events.

Fig. 5: One sample of the reachable sets of eight quadcopters in [0, 2s] time
interval and their interval hulls.



time-synchronization error δ, quadcopter 1 realizes that the received reachable
set message is useful for checking collision for the next 1.645 seconds of its clock.
After checking collision, quadcopter 1 knows that it will not collide with the
quadcopter 0 in the next 1.645 seconds (based on its clock).

It should be noted that we can intuitively verify the collision occurrences by
observing the intermediate reachable sets of all quadcopters and their interval
hulls. The intermediate reachable sets of the quadcopters in every [0, 2s] time
interval computed by the real-time reachable set computation algorithm (i.e.,
Algorithm 3.1) is described in Figure 5. The zoom plot within the figure presents
a very short-time interval reachable set of the quadcopters. We note that the
intermediate reachable set of a quadcopter is represented as a list of hyper-
rectangles and is used for verifying the local safety property at run-time. The
reachable set that is sent to another quadcopter is the interval hull of these
hyper-rectangles. The intermediate reachable set cannot be transferred via a
network since it is very large (i.e., hundreds of hyper-rectangles). The interval
hull of all hyper-rectangles contained in the intermediate reachable set covers all
possible trajectories of a quadcopter in the time interval of [0, 2s]. Therefore, it
can be used for safety verification. One may question why we use the interval
hull instead of using the convex hull of the reachable set since the former one
results in a more conservative result. The reason is that we want to perform the
safety verification online, convex hull of hundreds of hyper-rectangles is a time-
consuming operation. Therefore, in the real-time setting, interval hull operation
is a suitable solution. From the figure, we can see that the interval hulls of the
reachable set of all quadcopters do not intersect with each other. Therefore, there
is no collision occurrence (in the next 2 seconds of global time).

Time Quad. 1 Quad. 2 Quad. 3 Quad. 4 Quad. 5 Quad. 6 Quad. 7 Quad. 8

Ecoding Time τe (ms) 0.058 0.055 0.0553 0.0525 0.0557 0.0583 0.0584 0.0597

Decoding Time τd (ms) 0.0169 0.0193 0.0197 0.019 0.0210 0.0181 0.0177 0.022

Transferring Time τtf (ms) 2.64 2.48 1.42 1.11 1.12 1.08 1.05 1.13

Collision Checking Time τc (ms) 0.04 0.05 0.07 0.05 0.03 0.07 0.07 0.14

Total Verification Time V T (ms) 28.9363 27.9 20.6232 18.3055 18.2527 18.235 18.0223 19.1037

Table 1: The average encoding time τe, decoding time τd, transferring time τtf ,
collision checking time τc and total verification time V T of the quadcopters.

Since we implement the decentralized real-time safety verification algorithm
inside the quadcopter’s controller, it is important to analyze whether or not
the verification procedure affects the control performance of the controller. To
reason about this, we measure the average encoding, decoding, transferring and
collision checking times for all quadcopters using 100 samples which are pre-
sented in Table 1. We note that the transferring time τtf is the average time for
one message transferred from other quadcopters to the ith quadcopter. It can
be seen that the encoding, decoding and collision checking times at each quad-
copter constitute a tiny amount of time. The total verification time is the sum
of the reachable set computation, encoding, transferring, decoding and collision
checking times. Note that the allowable runtime for reachable set computation



algorithm is specified by users as Truntime = 10 milliseconds. Therefore, the
(average) total time for the safety verification procedure on each quadcopter is
V Ti = Truntime + τ ie + (N − 1) × (τ itf + τ id + τ ic), where i = 1, 2, . . . , N , and N
is the number of quadcopters. As shown in the Table, the (average) total veri-
fication time for each quadcopter is small (< 30 milliseconds), compared to the
control period Tc = 200 milliseconds. Besides, from the experiment, we observe
that the computation time for the control signal of the PID controller τ icontrol
(not presented in the table) is also small, i.e., from 5 to 10 milliseconds. Since
V Ti + τ icontrol < Tc/4 = 50 milliseconds, we can conclude that the verification
procedure does not affect the control performance of the controller.

Interestingly, from the verification time formula, we can estimate the range
of the number of agents that the decentralized real-time verification procedure
can deal with. The idea is that, in each control period Tc, after computing
the control signal, the remaining time bandwidth Tc − τcontrol can be used for
verification. Let τ̄e(τe), τ̄tf (τ tf ), τ̄d(τd), τ̄c(τ c) be the maximum (minimum)
encoding, transferring, decoding and collision checking times on a quadcopter,
τ̄control(τ control) be the maximum (minimum) control signal computation time
for each control period Tc, then the number of agents that the decentralized
real-time safety verification procedure can deal with (with assumption that the
communication network works well) satisfies the following constraint:

Tc − τ̄control − Truntime − τ̄e
τ̄tf + τ̄d + τ̄c

+ 1 ≤ N ≤ Tc − τ control − Truntime − τe
τ tf + τd + τ c

+ 1. (4)

Let consider our case study, from the Table, we assume that τ̄e = 0.0597,
τe = 0.0525, τ̄tf = 2.64, τ tf = 1.05, τ̄d = 0.022, τd = 0.0169, τ̄c = 0.14,
τ c = 0.03 milliseconds. Also, we assume that τ̄control = 10 and τ control = 5
milliseconds. We can estimate theoretically the number of quadcopters that our
verification approach can deal with is 64 ≤ N ≤ 168.

6 Related Work

Our work is inspired by the static and dynamic analysis of timed distributed
traces [8] and the real-time reachability analysis for verified simplex design [3].
The former one proposes a sound method of constructing a global reachable set
for a distributed CPS based on the recorded traces and time synchronization
errors of participating agents. Then the global reachable set is used to verify a
global property using Z3 [7]. This method can be considered to be a centralized
analysis where the reachable set of the whole system is constructed and verified
by one analyzer. Such a verification approach is offline which is fundamentally
different from our approach as we deal with online verification in a decentralized
manner. Our real-time verification method borrows the face-lifting technique
developed in [3] and applies it to a distributed CPS.

Another interesting aspect of real-time monitoring for linear systems was
recently published in [5]. In this work, the authors proposed an approach that
combines offline and online computation to decide if a given plant model has



entered an uncontrollable state which is a state that no control strategy can be
applied to prevent the plant go to the unsafe region. This method is useful for a
single real-time CPS, but not a distributed CPS with multiple agents.

Additionally, there has been other significant works for verifying distributed
CPS. Authors of [9, 23, 24] presented a real-time software for distributed CPS
but did not perform a safety verification of individual components and a whole
system. The works presented in [2,14,16] can be used to verify distributed CPS,
but they do not consider a real-time aspect. An interesting work proposed in [21]
can formally model and verify a distributed car control system against several
safety objectives such as collision avoidance for an arbitrary number of cars.
However, it does not address the verification problem of distributed CPS in a
real-time manner. The novelty of our approach is that it can over-approximate
of the reachable set of each agent whose dynamics are non-linear with a high
precision degree in real-time.

The most related work to our scheme was recently introduced in [20]. The au-
thors proposed an online verification using reachability analysis that can guaran-
tee safe motion of mobile robots with respective to walking pedestrians modeled
as hybrid systems. This work utilizes CORA toolbox [1] to perform reachability
analysis while our work uses a face-lifting technique. However, this work does not
consider the time-elapse for encoding, transferring and decoding the reachable
set messages between each agent, which play an important role in distributed
systems.

7 Conclusion and Future Work

We have proposed a decentralized real-time safety verification method for dis-
tributed cyber-physical systems. By utilizing the timing information and the
reachable set information from exchanged reachable set messages, a sound guar-
antee about the safety of the whole system is obtained for each participant
based on its local time. Our method has been successfully applied for a dis-
tributed search application using quadcopters built upon StarL framework. The
main benefit of our approach is that it allows participants to take advantages of
formal guarantees available locally in real-time to perform intelligent actions in
dangerous situations. This work is a fundamental step in dealing with real-time
safe motion/path planing for distributed robots. For future work, we seek to
deploy this method on a real-platform and extend it to distributed CPS with
heterogeneous agents where the agents can have different motion dynamics and
thus they have different control periods. In addition, the scalability of the pro-
posed method can be improved by exploiting the benefit of parallel processing,
i.e., each agent handles multiple reachable set messages and checks for collision
in parallel.
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