
Robustness Verification of Semantic
Segmentation Neural Networks using Relaxed

Reachability

Hoang-Dung Tran1, Neelanjana Pal2, Patrick Musau2, Diego Manzanas Lopez2,
Nathaniel Hamilton2, Xiaodong Yang2, Stanley Bak3, and Taylor T. Johnson2

1 University of Nebraska-Lincoln, USA
2 Vanderbilt University, USA

3 Stony Brook University, USA

Abstract. This paper introduces robustness verification for semantic
segmentation neural networks (in short, semantic segmentation networks
[SSNs]), building on and extending recent approaches for robustness ver-
ification of image classification neural networks. Despite recent progress
in developing verification methods for specifications such as local adver-
sarial robustness in deep neural networks (DNNs) in terms of scalability,
precision, and applicability to different network architectures, layers, and
activation functions, robustness verification of semantic segmentation has
not yet been considered. We address this limitation by developing and
applying new robustness analysis methods for several segmentation neu-
ral network architectures, specifically by addressing reachability analysis
of up-sampling layers, such as transposed convolution and dilated con-
volution. We consider several definitions of robustness for segmentation,
such as the percentage of pixels in the output that can be proven ro-
bust under different adversarial perturbations, and a robust variant of
intersection-over-union (IoU), the typical performance evaluation mea-
sure for segmentation tasks. Our approach is based on a new relaxed
reachability method, allowing users to select the percentage of a num-
ber of linear programming problems (LPs) to solve when constructing
the reachable set, through a relaxation factor percentage. The approach
is implemented within NNV, then applied and evaluated on segmenta-
tion datasets, such as a multi-digit variant of MNIST known as M2NIST.
Thorough experiments show that by using transposed convolution for up-
sampling and average-pooling for down-sampling, combined with mini-
mizing the number of ReLU layers in the SSNs, we can obtain SSNs with
not only high accuracy (IoU), but also that are more robust to adver-
sarial attacks and amenable to verification. Additionally, using our new
relaxed reachability method, we can significantly reduce the verification
time for neural networks whose ReLU layers dominate the total analysis
time, even in classification tasks.

1 Introduction

Image segmentation is the process of partitioning an image into multiple por-
tions, or segments, which are sets of pixels, and in short is referred to as seg-

mentation [30]. Segmentation has broad applications, ranging from perception
in autonomous cyber-physical systems (e.g., identifying pedestrians, lanes, ve-
hicles, etc. in images) and medical imaging (e.g., identifying tumors, measuring
tissue, etc. in X-rays and other medical scans) [31]. Semantic segmentation ad-
ditionally classifies each pixel into a class from a set of classes, and hence, can
be viewed as a generalization of image classification, the robustness of which has
been studied deeply in recent years.

State-of-the-art segmentation approaches typically rely on neural networks,
known as semantic segmentation networks (SSNs). Typically SSN architectures
take an image as input and are composed of two major portions: a sequence
of down-sampling layers to extract features from the input image into a latent
space, followed by another sequence of up-sampling layers, which in essence map
the features (roughly corresponding to the classes) from the latent space to the
image’s pixels, such that each pixel is associated with a class. However, just
as neural networks for image classification are well-known to be vulnerable to
adversarial perturbations, so too are SSNs [45]. Although deep neural networks
(DNN) verification is emerging into an established research area with many
tools and techniques proposed to verify safety and robustness specifications of
DNNs [22,43] and neural network controlled systems [15,17,34,37], most state-of-
art verification techniques for robustness verification of DNNs focus on variants
of classification4, frequently for images [1, 5, 7, 11,19,24,26,29,32,33,46].

To our knowledge, there are no existing methods that can verify robustness
of SSNs, which perform a more complex task than image classification, as the
output space dimensionality is (typically) of the same order of size as that of
the input space (e.g., the output is an image with the width and height of
the input image, but with identified classes in the output instead of color bit
depth; see Figures 5 and 7 for examples). We review some existing testing-based
robustness evaluation methods in our related work section.

Overview and Contributions. In this paper, we present the first formal approach
for verifying SSN robustness using reachability analysis. Our approach’s central
idea is, if an input image is attacked (perturbed) with some bounded distur-
bance, we construct a reachable output set that contains all possible classes for
each pixel. From the reachable output set, we can formally guarantee an SSN’s
robustness at the pixel-level, i.e., each pixel is provably classified correctly. Our
approach focuses on two effective SSN architectures, including dilated CNNs
and transposed CNNs, which to our knowledge, are not supported in any other
existing neural network verification approaches. We evaluate our approach on a
set of SSNs trained with different architectures on the MNIST [21] and M2NIST
data sets, the latter of which is a multi-digit variant of MNIST suitable for seg-
mentation evaluation. Additionally, we define and evaluate several metrics for
robustness, as the robustness evaluation is more sophisticated for segmentation.

4 The ACAS-Xu benchmarks [18] common in neural network verification can be viewed
as a form of classifier: the networks produce advisories (weak left, etc.), which in
essence are classes, but do not have images as their inputs.

Our reachability-based approach builds on ImageStars, which are an efficient
data structure for verifying convolutional neural networks (CNNs) [33], to con-
struct the input set and compute the reachable set layer-by-layer throughout
the SSN. The ImageStar approach offers both exact and approximate reachabil-
ity schemes for analyzing the robustness of CNNs. Although the approximate
scheme obtains a tighter reachable set in comparison with the zonotope [28] and
new polytope methods [29] by using optimized ranges, in practice, we do not
need a tight reachable set in many cases. Indeed, we only need a “tight enough”
reachable set to verify a property. Therefore, it is reasonable to let users have the
freedom to choose an appropriate level of relaxation in constructing the reach-
able set for their applications. More relaxation comes with a coarser reachable
set and vice versa. To fulfill this need, we also present a new relaxed ImageS-
tar approach to allow users to choose a specific relaxation level defined by a
relaxation factor (RF) percentage when constructing the reachable set for their
applications. This relaxed reachability method can help reduce the verification
time of SSNs significantly (up to 99%) in some cases.

In summary, the main contributions of this paper are: 1) the first formal
approach for robustness verification of SSNs, 2) a new relaxed ImageStar reach-
ability method, 3) the implementation of the approach in a prototype software
tool, 4) thorough assessment of these methods on different network architectures,
and 5) insight on how to train robust SSNs that are amenable to verification.

2 Preliminaries and problem formulation

2.1 ImageStars

In this section, we review the ImageStar data structure and its properties [33].

Definition 1. An ImageStar Θ is a tuple 〈c, V, P, l, u〉 where c ∈ Rh×w×nc is
the anchor image, V = {v1, v2, · · · , vm} is a set of m images in Rh×w×nc called
generator images, P : Rm → {>,⊥} is a predicate, l and u are the lower bound
and upper bound vectors of the predicate variables, and h,w, nc are the height,
width, and number of channels of the images, respectively. The generator images
are arranged to form the ImageStar’s h × w × nc × m basis array. The set of
images represented by the ImageStar is given as:

JΘK = {x | x = c+Σm
i=1(αivi) such that P (α1, · · · , αm) = >, li ≤ αi ≤ ui}.

We may refer to both the tuple Θ and the set of states JΘK as Θ. In this work, we
restrict the predicates to be a conjunction of linear constraints, P (α) , Cα ≤ d
where, for p linear constraints, C ∈ Rp×m, α is the vector of m-variables, i.e.,
α = [α1, · · · , αm]T , and d ∈ Rp×1. An ImageStar is the empty set if and only if
P (α) subject to l ≤ α ≤ u is empty.

Lemma 1 (Affine mapping of an ImageStar). An affine mapping of an
ImageStar Θ = 〈c, V, P, l, u〉 with a scale factor γ and an offset image β is

another ImageStar Θ′ = 〈c′, V ′, P ′, l′, u′〉 in which the new anchor, generators
and predicate are as follows:

c′ = γ · c+ β, V ′ = γ · V, P ′ ≡ P, l′ ≡ l, u′. ≡ u.

Note that, the scale factor γ can be a scalar or a vector containing scalar scale
factors in which each factor is used to scale one color channel in the ImageStar.

2.2 Range of a specific input in an ImageStar

We slightly alter the original definition of an ImageStar, [33], by introducing
lower bound and upper bound vectors to the predicate variables.Specifically, if
we want to find the range of an input x(i, j, k) (where 1 ≤ i ≤ h, 1 ≤ j ≤ w,
1 ≤ k ≤ nc) in an ImageStar Θ, we need to solve the following LP problem.

xmin = min(c(i, j, k) +Σm
p=1αivp(i, j, k)) s.t. Cα ≤ d, l ≤ α ≤ u, (1)

xmax = max(c(i, j, k) +Σm
p=1αivp(i, j, k)) s.t. Cα ≤ d, l ≤ α ≤ u. (2)

However, if we only want to estimate roughly the range of the neuron with-
out solving the LP optimization problem, we can compute the estimated range
quickly as follows.

xestmin =c(i, j, k) +Σm
p=1lp max(vp(i, j, k), 0) +Σm

q=1uq min(vq(i, j, k), 0), (3)

xestmax =c(i, j, k) +Σm
p=1up max(vp(i, j, k), 0) +Σm

q=1lq min(vq(i, j, k), 0). (4)

2.3 Semantic segmentation networks and reachability

Definition 2. A semantic segmentation network (SSN) f is a nonlinear func-
tion that maps each pixel x(i, j) of a multichannel input image x to a target class
y(i, j) from a set of classes L = {1, 2, . . . , L}:

f : x ∈ Rh×w×nc → y ∈ Lh×w

x(i, j)→ y(i, j) ∈ L,
(5)

where h,w, nc are the height, width, and number of channels of the input image,
respectively, and (i, j) ∈ {1, . . . , h} × {1, . . . , w} are the pixel height and width
indices, respectively.

Definition 3. Reachability analysis (or shortly, Reach) of a SSN f on an Im-
ageStar input set I is the process of computing all possible classes corresponding
to every pixel in all input images x in the ImageStar input set I:

Reach(f, I) : I → Rf
x→ y = f(x).

(6)

We call Rf (I) the pixel-class reachable set of the SSN corresponding to the
input set I (or just Rf when I is clear from context), in which each pixel-class
pc(i, j) ∈ Rf at each pixel (i, j) ∈ {1, . . . , h}×{1, . . . , w} may contain more than
one class, i.e., pc(i, j) = {l1, . . . , lm} ⊆ L, for L ≥ m ≥ 1.

2.4 Adversarial attacks and robustness

Definition 4. An adversarial attack is where a set of n noise images xnoise
= [xnoise1 , . . . , xnoisen] and corresponding coefficient vector ε = [ε1, . . . , εn]T are
added to input image x to change the classification result of a network. Mathe-
matically, an adversarial attack is a linear parameterized function gε,xnoise(·) that
takes an image as an input and produces the corresponding adversarial image.

xadv = gε,xnoise(x) = x+Σn
i=1εi · xnoisei (7)

In this paper, we focus on the robustness analysis of SSNs under adversarial
attacks. We refer readers to [45] for a survey of state-of-art attack and defenses
approaches, mostly for classification.

Definition 5. An unknown, bounded adversarial attack (UBAA) is an adver-
sarial attack where the value of the coefficient vector ε is unknown but bounded
in a range [ε, ε], i.e., εi ≤ εi ≤ εi. An UBAA can be defined formally as a tuple
A = 〈ε, ε, xnoise〉.

Proposition 1 (UBAA as an ImageStar). Applying an UBAA A = 〈ε, ε, xnoise〉
on an image x creates a set of images, which can be represented as an ImageStar
I = 〈c ≡ x, V ≡ xnoise, P (α) ≡ P (ε) ≡ ε ≤ ε ≤ ε〉.

Definition 6. Given a SSN f and an input image x, a pixel x(i, j) ∈ x is called
robust to an UBAA A if and only if: ∀ gε,xnoise ∈ A, f(xadv(i, j)) = f(x(i, j)),
where xadv(i, j) ∈ xadv = gε,xnoise(x). If ∃ gε,xnoise ∈ A such that f(xadv(i, j)) 6=
f(x(i, j)), the pixel x(i, j) is called non-robust.

Definition 7. The robustness value (RV) of a SSN corresponding to an UBAA
applied to an input image is defined as RV = Nrobust

Npixels
× 100%, where Nrobust is

the total number of robust pixels under the attack, and Npixels = h ·w is the total
number of pixels of the input image.

Definition 8. The robustness sensitivity (RS) of a SSN corresponding to an
UBAA applied to an input image is defined as RS = Nnonrobust+Nunknown

Nattackedpixels
, where

Nnonrobust is the total number of non-robust pixels under the attack, Nunknown
is the total number of pixels whose robustness is unknown (may or may not be
robust), and Nattackedpixels is the total number of attacked pixels of the input
image.

Definition 9. The robust IoU (Intersection-over-Union) (RIoU) of a SSN cor-
responding to an UBAA applied to an input image is defined as the average IoU
of all labels that are robust under the attack. Let x be a segmentation ground-
truth image, y be the verified segmentation image under the attack, and IoUp be
the IoU (also known as Jaccard index) of the pth label in the label images x and
y , then the robust IoU of the SSN is computed by:

RIoU =
ΣL
p=1IoUp

L
. (8)

The robust IoU definition is quite similar to traditional IoU, which is a core
metric to evaluate the accuracy in training SSNs. However, instead of assessing
the accuracy, we use the robust IoU concept in combination with the robustness
value and robustness sensitivity as core metrics to evaluate the robustness of a
SSN under adversarial attack in the verification context.

2.5 Robustness verification problem formulation

We consider two robustness verification problems.

Problem 1. Given a SSN f , an image x, and an UBAA A, prove for every pixel
x(i, j) ∈ x that x(i, j) is robust or non-robust to the attack A.

Problem 2. Given a SSN f , a set of N test images {x1, . . . , xN}, and an UBAA
A, compute the average robustness value RV , the average robustness sensitivity
RS, and the average robust IoU RIoU of the SSN (corresponding to A).

The core step in solving these problems is to prove the robustness of a SSN f
under an UBAA A at the pixel-level, i.e., Problem 1, which can be solved using
reachability analysis computing the “pixel-class reachable set”Rf = Reach(f, I)
that contains all possible classes of every pixel in the input set I constructed
by applying the attack A on an image x (Proposition 1). Next, we investi-
gate a new relaxed ImageStar reachability method for the ReLU layer, the
up-sampling layers, including transposed convolution, dilated convolution, and
pixel-classification. We note that the softmax layer can be neglected in the anal-
ysis [33].

3 Reachability of SSNs using relaxed ImageStars

In this section, we build on the original ImageStar method to develop reach-
ability analysis for the transposed convolution and dilated convolution layers,
and propose a new relaxed ImageStar reachability method for the ReLU and
pixel-classification layers. The reachability algorithms for other layers can be
handled using existing methods, such as those in [33]. Thus, we highlight han-
dling the up-sampling layers, which requires overcoming significant challenges,
and has not previously been done. Handling up-sampling layers is necessary for
SSN robustness verification.

3.1 Reachability of a transposed (dilated) convolutional layer

Transposed (dilated) convolutions are frequently used for up-sampling in image
segmentation applications to generate an output feature map that has a spatial
dimension greater than that of the input feature map. A transposed convolution
operation consists of four main steps, depicted in Figure 1, and is defined by its
kernel size k, padding p, and stride s. A dilated convolution operation is defined
by its kernel size k, padding p, stride s and dilation factor d.

Input Kernel
2. Insert z zeros

between the rows and
the columns

3. Add p’ number of
zeros around the

image

4. Slide the kernel 1
pixel at a time across

the image
Output

1. Calculate
z = s - 1

p’ = k - p - 1
s’ = 1

**
(s,p)

Fig. 1: An example of a transposed convolution operation.

0.5 0

-1 2

𝐼 = 𝑐 + 𝛼!𝑣! + 𝛼"𝑣", 𝛼 = 𝛼!, 𝛼" # ,𝑃 = 𝐶𝛼 ≤ 𝑑, 𝑙 ≤ 𝛼 ≤ 𝑢	

𝑐

1 -1

1 -1
+	𝛼!×

𝑣!

1 0.5

-1 1
+	𝛼"×

𝑣"

𝑃 = 1 1
−1 1

𝛼!
𝛼" ≤ 1

1 , −10 ≤
𝛼!
𝛼" ≤ 1

1
,

𝐶 𝛼 𝑑 𝑙 𝑢𝛼

𝑹𝒆𝑳𝑼 𝑰 =	?

𝛼"

-1 1

1

𝛼!0

=
n!! n!"

n"! n""

𝐼

n!!

n!"

n"!

n""

Value Estimated Range Exact RangeNeuron

0.5+ 𝛼! +𝛼" [−0.5,2.5] [−0.5,1.5]

−𝛼! +0.5𝛼" [−1,1.5] [−1,1]

−1 +𝛼! −𝛼" [−3,0] [−2,0]

2− 𝛼! +𝛼" [1,4] [3,4]

Fig. 2: Example 1.

Lemma 2. The reachable set of a transposed (dilated) convolutional layer with
an ImageStar input set I = 〈c, V, P 〉 is another ImageStar, specifically I ′ =
〈c′, V ′, P 〉 where c′ = TConv(c) (c′ = DConv(c)) is the transposed (dilated)
convolution operation applied to the anchor image, V ′ = {v′1, . . . , v′m}, v′i =
TConvZeroBias(vi) (v′i = DConvZeroBias(vi)) is the transposed (dilated) con-
volution operation with zero bias applied to the generator images, i.e., using only
the weights of the layer. Each of these are affine operations, see [30] for details,
and as shown in Lemma 1, ImageStars are closed under affine operations.5

3.2 Relaxed reachability of a ReLU layer

In this section, we present the relaxed ImageStar reachability of a ReLU layer.
Like the original approximate reachability method [33], the relaxed ImageStar
approach computes an overapproximate reachable set of a ReLU layer. However,
it allows users to construct a “tight enough” reachable set sufficient to prove
properties for their applications via a user-specified relaxation factor scaled from
0% to 100% that reduces verification time. In this paper, we focus on this pro-
cess for ReLU layers. We use a small example depicted in Figure 2 to illustrate
the reachability of a ReLU layer using the relaxed ImageStar method. In this
example, we have a 2 × 2 (4 neurons) ImageStar input set I with the anchor

5 In most neural network frameworks, transposed and dilated convolution are imple-
mented as convolution with particular choices of padding, stride, and dilation factor
as illustrated in Figure 1 for transposed convolution, which is well-known to be affine.

image c and two generator images v1 and v2, and we want to compute an over-
approximation of ReLU(I). To do that, we apply the triangle overapproximation
rule [10,36] for the ReLU activation function at each neuron of the input set in
the following.

Lemma 3. For any input x ∈ [l, u], the output set Y = {y| y = ReLU(x)}
satisfies: (1) If l ≥ 0, then y = x; (2) If u ≤ 0, then y = 0; or (3) If l < 0 and

u > 0, then Y ⊂ Ȳ = {y| y ≥ 0, y ≤ u(x−l)
u−l , y ≥ x}.

Using the predicate variable’s bounds, we can quickly estimate the ranges of
all neurons in the ImageStar set in Figure 2 without solving any linear program-
ming (LP) optimization problems (by using Equation 3). From the estimated
ranges, we see ReLU(n21) = 0 (n21 ≤ 0) and ReLU(n22) = 2−α1+α2 (n22 > 0).
Therefore, to overapproximate ReLU(I), we need only perform the overapprox-
imation rule on neurons n11 and n12, which is where the user-defined relaxation
can be applied. In the original approximate reachability approach [33], we use
the exact ranges to construct the triangle overapproximation of the ReLU acti-
vation function, which requires solving 4 LPs to find the exact ranges for n11 and
n12, which are [−0.5, 1.5] and [−1, 1] respectively in this example. Now, if users
want to reduce the number of LPs solved in constructing the overapproximate
reachable set to speed up verification, which LPs should be chosen to solve to
construct a sufficiently tight overapproximate reachable set? For example, if the
users want to relax 50% number of LPs for Example 1, then only 4−(50%×4) = 2
LPs are solved to construct an overapproximate reachable set. So, which two LPs
should be chosen?

The answer is found by combining the exact ranges obtained by solving LPs
and the estimated ranges to construct the overapproximate reachable set. This
can be done using on of the following heuristic approaches. These approaches
select which neurons and their corresponding lower (upper) bounds should be
obtained exactly to construct an as-tight-as-possible overapproximate reachable
set with a given allowable number of LPs. Some of these heuristic approaches
are based on the estimated ranges information.

3.2.1 Randomly relaxed reachability. This approach randomly selects
some LPs in the LPs pool to solve to obtain the lower (upper) bounds for some
(random) neurons. For Example 1, the LPs pool is as follows.

LPpool ={min(n11),max(n11),min(n22),max(n22),

subject to : P = Cα ≤ d, l ≤ α ≤ u}.

If users relax 50% of the LPs, then the randomly relaxed reachability algorithm
selects aimlessly two LPs in the LP pool to solve, and then combines the obtained
lower (upper) ranges with the estimated ranges to construct an overapproximate
reachable set using the triangle overapproximation rule, i.e., Lemma 3.

From Figure 2, we can see that the estimated lower ranges of neurons n11
and n12 are the same as the exact ones. Therefore, if the randomly relaxed

𝑅𝑒𝐿𝑈(𝑛!!)

1 𝑛!!
0

-0.5 2 2.5

𝑆"!!! = 0.625

2.5

0

𝑅𝑒𝐿𝑈(𝑛!")

1 𝑛!"-0.5 2.5

𝑆"!!" = 0.75

2.5

-1 1.5

𝑙)#$% < 0∧ 𝑢.#$% > 0: 𝑆)#!" =
1
2×|𝑙

)#!" |×𝑢.#!"

Fig. 3: Overapproximation areas at neurons n11 and n12 using estimated ranges.

reachability algorithm selects min(n11) and min(n12) to solve, the final ranges
used for constructing the reachable set exactly match the estimated ranges.
This means solving min(n11) and min(n12) wastes time and does not reduce the
conservativeness of the overapproximate reachable set, as no tighter ranges are
obtained. In another case, if the algorithm selects max(n11) and max(n12), then
we can obtain the exact ranges of two neurons by solving only two LPs (instead
of four LPs), when combining the estimated lower ranges, i.e., −0.5 for n11 and
−1 for n12 with the optimized upper ranges, i.e., 1.5 for n11 and 1 for n12. In this
case, the randomly relaxed algorithm can obtain the tightest overapproximate
reachable set by solving only 50% of the LPs.

3.2.2 Area-based relaxed reachability. The area-based relaxed reacha-
bility approach finds and optimizes the ranges of neurons with the potentially
largest triangle overapproximation areas. Figure 3 illustrates the areas of the
triangle overapproximation at neurons n11 and n12 using the estimated ranges.
We see the overapproximation area of n12 (S̃n12

= 0.75) is larger than that of
n11 (S̃n11

= 0.625). Therefore, if users relax 50% of the LPs, the area-based
relaxed reachability algorithm will use two LPs to optimize the range of neuron
n12, i.e., solving min(n12) and max(n12). With this optimized range, the over-
approximation area of the neuron n12 reduces from S̃n12 = 0.75 to Sn12 = 0.5. If
users relax 75% of the LPs, then the algorithm will use two LPs to optimize the
range of the neuron n12 and one LP to optimize the upper bound of the neuron
n11, because ũ11 = 2.5 > |l̃11| = 0.5.

3.2.3 Range-based relaxed reachability. The range-based relaxed reacha-
bility approach finds the neurons with the potentially widest ranges to optimize
their ranges. For Example 1, unlike the area-based approach, the range-based ap-
proach will use two LPs to optimize the range of neuron n11, i.e., solving min(n11)
and max(n11), whose estimated range (ER) is widest (ERn11

= |ũn11
− l̃n11

|
= |2.5 − (−0.5)| = 3 > ERn12

= 2.5). After optimizing the range of neuron
n11, the overapproximation area at this neuron reduces from S̃n11 = 0.625 to
Sn11 = 0.375. The improvement in terms of overapproximation area reduction of
the range-based method is equivalent to the above area-based approach in this
case, i.e., ∆Sn11

= ∆Sn12
= 0.25.

3.2.4 Bound-based relaxed reachability The bound-based relaxed reacha-
bility approach finds neurons with the potentially largest (lower or upper) bounds
to optimize their bounds. For Example 1, the algorithm will use two LPs to op-
timize the upper bounds of the neurons n11 and n12, i.e., solving max(n11) and
max(n12), because their estimated upper bounds are the ones with largest ab-
solute values. Thus, |ũn11 | = 2.5 > |ũn12 | = 1.5 > |l̃n12 | = 1 > |l̃n11 | = 0.5.
After optimizing these upper bounds, the overapproximation areas at neurons
n11 and n12 reduces to 0.375 and 0.5 respectively. In this case, we can see that
the bound-based relaxed approach is the best approach compared to the oth-
ers since it reduces the overapproximation errors at both neurons n11 and n12,
effectively reducing the overapproximation areas by ∆Sn11 = ∆Sn12 = 0.25. It
is worth noting the obtained overapproximate reachable set is the same as the
one obtained by the original approximate ImageStar reachability because the
estimated and optimized lower bounds are the same.

3.3 Reachability of a pixel-classification layer

The last layer in an SSN is a pixel-classification layer, which assigns a specific
class (label) to each pixel of an input image. Given an h× w × nc input image,
the size of the input x to the pixel-classification layer is h × w × L, where L
is the number of classes (labels) of the network (we neglect the softmax layer
in the analysis). To assign a specific class l, 1 ≤ l ≤ L to a pixel x(i, j) ∈ x,
1 ≤ i ≤ h, 1 ≤ j ≤ w , the value of the pixel x(i, j) at channel l, i.e., x(i, j, l),
needs to be the maximum one among L channels. When the input to the network
is an ImageStar set instead of a single image, the input to the pixel-classification
layer is a h × w × L ImageStar set. Depending on the value of the predicate
variables in the input set, a pixel x(i, j) in the set may be assigned to more than
one class. For example, if l1, . . . , lm are the cross-channel max-point candidates
of the pixel x(i, j) in L channels , the pixel-class reachable set of the layer at
the considered pixel is pc(i, j) = {l1, . . . , lm}. By determining all cross-channel
max-point candidates of all pixels in the input set, we can obtain the pixel-
class reachable set of the layer, which is also the reachable set of the SSN,
Rf = [pc(i, j)]h×w, i.e., the collection of pixel classes at every index (i, j).

Similar to the max-pooling layer [33], determining all cross-channel max-
point candidates of all pixels in the input set can be done via solving linear
programming (LP) optimization problems, which is time-consuming due to the
number of LPs required (or equivalently the size of the LP). To reduce compu-
tation time, we estimate the lower and upper bounds of the ImageStar input to
the layer using only the ranges of the predicate variables. These bounds are then
used to predict all possible cross-channel max-point candidates of all pixels .

4 Verification Algorithm

Our reachability-based verification algorithm for SSNs is presented in Algorithm
4.1. The algorithm takes an SSN f , an input image x, an UBAA A, and a

Algorithm 4.1 Robustness verification of a semantic segmentation network.

Input: f, x,A, RF,method . SSN, input image, attack, relaxation factor, relaxation method

Output: Rf , RV,RS . pixel-class reachable set, robustness value, robustness sensitivity

1: procedure [Rf , RV,RS] = verify(f, x,A, RF,method)
2: I = constructInputSet(x,A) . construct an ImageStar input set

3: Rf = Reach(f, I,method) . compute the pixel-class reachable set

4: y = f(x) . compute non-attacked output segmentation image

5: h = x.Height, w = x.Width
6: Nrobust = 0, Nnonrobust = 0, Nunknown = 0, Nattackedpixels = 0
7: for i = 1 : h do
8: for j = 1 : w do
9: if A.xnoise(i, j) 6= 0 then Nattackedpixels = Nattackedpixels + 1

10: if Rf (i, j) = y(i, j) then Nrobust = Nrobust + 1 . pixel x(i, j) is robust

11: else
12: if y(i, j) 6⊂ Rf (i, j) then Nnonrobust = Nnonrobust + 1 . pixel x(i, j)

is non-robust

13: else Nunknown = Nunknown + 1 . pixel x(i, j) robustness is unknown

14: RV = (Nrobust/(h · w)) · 100%) . robustness value

15: RS = (Nnonrobust +Nunknown)/Nattackedpixels . robustness sensitivity

16: RIoU = getAverageIoU(y,Rf) . robust IoU

reachability method (exact or approximate) as inputs, then returns the pixel-
class reachable set Rf , the robustness value RV , sensitivity RS, and robust IoU
RIoU of the SSN. The algorithm works as follows. First, it constructs the input
set corresponding to the attack using Proposition 1 (line 2). Then, it computes
the pixel-class reachable set of the SSN using reachability analysis layer-by-
layer (line 3). Using the pixel-class reachable set, it verifies the robustness of
each pixel in the reachable set by comparing its classes with the non-attacked
(ground truth) output segmentation image, i.e., y = f(x). If Rf (i, j) = y(i, j),
the pixel x(i, j) is robust under the attack (line 10). IfRf (i, j) 6= y(i, j)∧y(i, j) 6⊂
Rf (i, j), the pixel x(i, j) is non-robust under the attack (line 12). Otherwise,
the robustness of the pixel x(i, j) is unknown (may be robust or non-robust),
due to overapproximation. Beyond verifying the robustness of each pixel in the
reachable set, it also counts the numbers of 1) robust pixels Nrobust (line 10), 2)
non-robust pixels Nnonrobust (line 12), and 3) pixels with unknown robustness
Nunknown (line 13). Finally, it computes the robustness value, sensitivity and
robust IoU of the SSN (lines 12, 13 and 14). The robustness of a SSN under an
UBAA should be evaluated on a set of test images (Problem 2).

5 Evaluation

Experimental setup. The approach is implemented in the NNV software tool for
verification of deep neural networks6. We evaluate our approach by verifying the

6 The examples and tool are available: https://github.com/verivital/nnv/tree/
cav2021/code/nnv/examples/Submission/CAV2021. An archival version is available
on Zenodo: https://doi.org/10.5281/zenodo.4726346.

https://github.com/verivital/nnv/tree/cav2021/code/nnv/examples/Submission/CAV2021
https://github.com/verivital/nnv/tree/cav2021/code/nnv/examples/Submission/CAV2021
https://doi.org/10.5281/zenodo.4726346

robustness of a set of SSNs trained on the MNIST [21] and M2NIST datasets
shown in Table 1, where class “ten” corresponds to the background, and the
other classes to the corresponding digits. The experiments were performed on a
computer with an Intel Core i7-6700 CPU at 3.4GHz with 8 cores and 64 GB
Memory running Windows 10. The over-approximating reachability method and
6 cores are used for computing the pixel-class reachable sets.

We randomly selected 100 MNIST images (of size 28× 28) and 100 M2NIST
images (of size 64 × 84) to evaluate the robustness of the trained SSNs. We
attack each image x in these two test sets using an UBAA brightening attack.
Particularly, we darken a pixel x(i, j) in the image if its value is larger than
a threshold d, i.e. if x(i, j) > d → xadv(i, j) = a � d. Mathematically, the
adversarial darkening attack on an image x can be described as:

xadv = x+ ε · xnoise, 1−∆ε ≤ ε ≤ 1,

xnoise(i, j) = −x(i, j), if x(i, j) > d, otherwise xnoise(i, j) = 0.

For ε = 1, we completely darken all the pixels whose values are larger than d
(= 150 in our experiments), i.e., xadv(i, j) = 0. The size of the input set caused
by the attack is defined by ∆ε. Generally, we have a large input set when ∆ε is
large. To evaluate the average robustness values (RV) and sensitivities (RS) of
the SSNs (on the test sets) in the connection with the number of attacked pixels,
we further restrict the maximum allowable number of attacked pixels by Nmax.

We focus our evaluation and discussion on three aspects: 1) the robustness
and sensitivity of different SSN architectures under adversarial attacks, 2) the
effect of SSN architectures and input size on verification performance, and 3)
the improvement of the new relaxed reachability method in terms of verification
results and performance. For the first two aspects, we use the relaxed reachability
method with relaxation factor RF = 0%, i.e., no relaxation, to construct the
reachable sets of the SSNs.

ID Name Accuracy(IoU) Down-sampling Up-sampling Input size Layers

N1 mnist ap tc 0.87 C+AP TC 28× 28 21 (1I, 7C, 3R, 4B, 2AP, 2TC, 1S, 1L)

N2 mnist mp tc 0.85 C+MP TC 28× 28 21 (1I, 7C, 3R, 4B, 2MP, 2TC, 1S, 1L)

N3 mnist dc 0.83 C DC 28× 28 21 (1I, 3C, 3R, 3B, 9DC, 1S, 1L)

N4 m2nist ap dc 0.62 C+AP DC 64× 84 16 (1I, 4C, 3R, 3AP, 3DC, 1S, 1L)

N5 m2nist ap tc 0.75 C+AP TC 64× 84 22 (1I, 7C, 8R, 2AP, 2TC, 1S, 1L)

N6 m2nist dc 0.72 C DC 64× 84 24 (1I, 1C, 5R, 5B, 10DC, 1S, 1L)

Table 1: Semantic Segmentation Network Benchmarks. Notation: ‘I’: input, ‘C’:
convolution, ‘TC’: transposed convolution, ‘DC’: dilated convolution, ‘R’: ReLU,
‘B’: batch normalization, ‘AP’: average-pooling, ‘MP’: max-pooling, ‘S’: softmax,
‘L’: label (pixel classification)

.

10 20 30 40 50
0.85

0.9

0.95
(a)

10 20 30 40 50
2

3

4

5
(b)

10 20 30 40 50
0.2

0.3

0.4

0.5

0.6
(c)

10 20 30 40 50
660

680

700

720

740

760
(d)

10 20 30 40 50
20

40

60

80

100

120
(e)

10 20 30 40 50
0

1

2

3

4

5
(f)

(a) ∆ε = 0.001.

1 1.5 2 2.5 3

10-3

0.89

0.9

0.91

0.92
(a)

1 1.5 2 2.5 3

10-3

3

3.5

4

4.5
(b)

1 1.5 2 2.5 3

10-3

0.35

0.4

0.45

0.5
(c)

1 1.5 2 2.5 3

10-3

700

705

710

715

720

(d)

1 1.5 2 2.5 3

10-3

60

70

80

90
(e)

1 1.5 2 2.5 3

10-3

0

2

4

6

(f)

(b) Nmax = 20.

Fig. 4: The average robustness value, sensitivity, and IoU of MNIST SSNs.

5.1 Robustness and sensitivity of different network architectures

Max-pooling vs. average-pooling. Max-pooling is the preferred choice over
average-pooling for training SSNs because of its nonlinear characteristics. We in-
vestigate whether max-pooling is actually better than average-pooling in terms
of accuracy and robustness of deep SSN. Figure 4 illustrates the average ro-
bustness and sensitivities of MNIST SSNs under different numbers of attacked
pixels (Figure 4a, 20 images are used) and input sizes (Figure 4b, 10 images
are used). We focus on the first two SSNs, i.e. N1 and N2. These SSNs have
the same architectures (with 21 layers). The only difference is N1 uses average-
pooling for down-sampling while N2 uses max-pooling for the same task (both
SSNs use two transposed convolutional layers for up-sampling). With training,
we experienced that N1 is more accurate than N2, (0.87 IoU vs. 0.85 IoU, see
Table 1). Interestingly, N1 is also more robust than N2 since it has a larger
average robustness value (Figures 4a-a, 4b-a), a higher average robust IoU (Fig-
ures 4a-c, 4b-c), and more robust pixels (Figures 4a-d, 4b-d). One can also see
that the average-pooling-based SSN is less sensitive to the attack than the max-
pooling-based SSN (Figures 4a-(b, e, f), 4b-(b, e, f)). Notably, when more pixels
are attacked or larger input sizes are used, the max-pooling-based SSN (i.e.,
N2) produces more pixels with unknown robustness (Figures 4a-f, 4b-f, and 5).
Lastly, when the input size increases, the robustness of the max-pooling-based
SSN drops more quickly than the average-pooling-based SSNs (Figure 4b (a,d))
and its sensitivity increases faster (Figure 4b -b). We believe the main reason
causing the max-pooling-based SSN to be more sensitive to the attack is its high
nonlinearity using max-pooling layers. It is quite interesting that even the max-
pooling-based SSN N2 has a higher accuracy (0.85) than the non-max-pooling
SSN N3 (0.83), the average robust IoU of the SSN N2 is smaller than the one of
N3 (Figures 4a-c, 4b-c).

Accuracy vs. robustness; deeper networks and ReLU layer robust-
ness. Accuracy (and for segmentation, IoU) is one of the most important factors
for evaluating deep neural networks. We investigate whether more accurate and
deeper SSNs are more robust compared to other architectures. To determine

2th Segmentation without Attack

three

ten

2th Pixel-class Reach Set

three

five

ten

unknown

2th Verified Reach Set

three

ten

unknown

misclass

(a) Rf (N1), Nunknown = 6 (Nmax = 50,∆ε = 0.003).
2th Segmentation without Attack

three

ten

2th Pixel-class Reach Set

three

ten

unknown

2th Verified Reach Set

three

ten

unknown

misclass

(b) Rf (N2), Nunknown = 19 (Nmax = 50,∆ε = 0.003).

Fig. 5: Example pixel-class reachable sets of MNIST SSNs. The max-pooling-
based SSN N2 produces more unknown pixels than the average-pooling-based
SSN N1 (19 vs. 6).

this, we analyze the robustness of two SSNs with different architectures and ac-
curacy trained on the M2NIST data set. The first SSN N4 is based on dilated
convolution with 16 layers and 0.62 (IoU) accuracy (Table 1). The second SSN
N5 is based on transposed convolution with 22 layers and 0.75 (IoU) accuracy.
Here, the second SSN is deeper and more accurate than the first SSN. We run
the robustness analysis on these two SSNs on a set of 20 M2NIST images. The
results are depicted in Figure 6. In terms of robustness, the more accurate and
deeper SSN N5 is worse than the less accurate one N4 as it has a smaller aver-
age robustness value and IoU (Figures 6-(a,c), 7). Additionally, N5 is also more
sensitive to the attack than N4 (Figure 6-(b,e)) when we increase the number
of attacked pixels. The main reason for this result is, the more accurate SSN
contains many ReLU layers (8 ReLU layers) compared with the less accurate
one (3 ReLU layers). Similar to the max-pooling layer, using many ReLU layers
increases the nonlinearity of the SSN to capture complex features of images.
Unfortunately, it also makes the SSN more sensitive to the attack.

Dilated convolution vs. Transposed convolution. Dilated convolution
and transposed convolution are typical choices for semantic segmentation tasks.
We compare these techniques in terms of accuracy and robustness. On MNIST
SSNs, although the transposed-convolution SSNs N1 and the dilated-convolution
SSN N3 have the same number of layers (21 layers with 3 ReLU), N3 is less
accurate than N1 (0.83 vs. 0.87 IoU, see Table 1). In terms of robustness, N3

is also less robust and more sensitive to the attack than N1, as it has smaller
average RV and IoU, and larger sensitivities (Figure 4). On M2NIST SSNs, by
considering 21-layer (8 ReLU) transposed-convolution SSN N5 and 24-layer (4
ReLU) dilated-convolution SSN N6, one can see that even with more layers, N6

is less accurate than N5 (0.72 vs. 0.75 IoU, see Table 1). Also, N6 is less robust
and more sensitive to the attack than N5, since it has smaller average RV and
IoU, and larger sensitivities (Figure 6).

5 10 15 20 25

0.985

0.99

0.995

1
(a)

5 10 15 20 25

2

2.5

3

3.5
(b)

5 10 15 20 25
0.65

0.7

0.75

0.8

(c)

5 10 15 20 25
5280

5300

5320

5340

5360

5380
(d)

5 10 15 20 25
0

20

40

60

80

100
(e)

5 10 15 20 25
-1

-0.5

0

0.5

1
(f)

(a)

5 10 15 20 25
20

40

60

80

100

120

140
(a) (b)

N
4

N
5

N
6

0

10

20

30

40

50

60

70

80

90

100

(b)

Fig. 6: The average robustness value, sensitivities, IoU, verification time (∆ε =
10−5) and reachability times (blue for ReLU layers and orange for others, ∆ε =
6× 10−5) of M2NIST SSNs.

4th Segmentation without Attack

one

three

five

six

ten

4th Pixel-class Reach Set

one

three

five

six

nine

ten 4th Verified Reach Set

one

three

five

six

ten

misclass

(a) Rf (N4), Nnonrobust = 43 (Nmax = 25,∆ε = 0.00001).
4th Segmentation without Attack

one

six

ten

4th Pixel-class Reach Set

one

six

seven

ten
4th Verified Reach Set

one

six

ten

misclass

(b) Rf (N5), Nnonrobust = 51 (Nmax = 25,∆ε = 0.00001).

Fig. 7: Example pixel-class reachable sets of M2NIST SSNs. The more accurate
and deeper SSN N5 produces more non-robust pixels than the less accurate SSN
N4 (51 vs. 43).

5.2 Verification performance

Dilated convolution vs. transposed convolution. In general, more attacked
pixels and larger input size leads to greater verification time, as depicted in
Figures 8a, 8b and 6b-(a). Interestingly, these show that the dilated-convolution-
based SSNs require greater verification time than the ones using transposed
convolution. For example, the verification time of N3 is larger than N2 when
they have the same number of layers.

Max-pooling and ReLU layers. Using max-pooling layer for down sam-
pling not only decreases the robustness of an SSN but also causes a dramatic
increase in time and memory consumption in verification. Figure 8 shows that
the verification time (in seconds) of the max-pooling-based SSN N2 grows signif-
icantly compared with the average-pooling-based SSN N1 when increasing the
number of attacked pixels Nattackedpixels or the input size ∆ε. When dealing

10 20 30 40 50
0

50

100

150

200

250

300

(a)

1 1.5 2 2.5 3

10-3

0

50

100

150

200

250

(b)

N1

0.005 0.01
0

10

20

30

40

50

60

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

N2

0.005 0.01
0

50

100

150

200

250

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

N3

0.005 0.01
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

(c)

Fig. 8: Verification time is proportional to the number of attacked pixels
and input size. The max-pooling-based N2 and dilated convolution-based N3

SSNs require more verification time than the average-pooling and transposed
convolution-based SSN N1. The reachability times of ReLU layers (blue) domi-
nates the total reachability time (other layers reachability times are in orange).

with more number of attacked pixels or larger input size, the max-pooling layer
introduces more predicate variables to overapproximate the reachable set, which
causes the increase both in computation time and memory usage [33]. Similar
to the max-pooling layer, the ReLU layer is also the main source of robustness
degradation. Additionally, it may also dominate the reachability time of a SSN,
as shown in Figure 8c. This leads to an increase in the verification time for SSNs
with many ReLU layers.

5.3 Reducing verification time with relaxation

When ReLU layer analysis dominates the total verification time significantly, as
in the case of MNIST SSNs shown in Figure 8c and not in the case of M2NIST
SSNs depicted in Figure 6b-(b), we can use the relaxed ImageStar reachability
methods to speed up the verification process. Table 2 presents the decrease in
the verification times in percentage when applying different relaxation heuristics
for ReLU layers. We note that due to the small input size and a small number of
attacked pixels, we do not see any changes in the robustness value, sensitivity,
and IoU compared with the non-relaxation method, i.e., the original approximate
ImageStar method. However, there is a significant improvement in verification
time when we apply the relaxed ImageStar reachability for non-max-pooling
SSNs N1 and N3. More relaxation leads to a higher reduction in the verification
time: up to 99% of the verification time can be reduced with 100% relaxation in
the reachability of ReLU layers.

Interestingly, using relaxation for the max-pooling-based SSN N2 decreases
the verification performance, i.e., leading to higher verification time. The main
reason is that the relaxed reachable sets after ReLU layers become increasingly
conservative. At the max-pooling layer, a more conservative reachable set leads
to more local max-point candidates that need to be determined via solving more
LPs, which causes an increase in the verification time. Additionally, if a local
region has more than one max-point candidate, a new predicate variable and its
corresponding generator image are introduced [33]. The increase in the number
of predicate variables and generator images causes the explosion in the memory

ID RF
∆ε = 0.005 ∆ε = 0.01 ∆ε = 0.02

Rand Area Range Bound Rand Area Range Bound Rand Area Range Bound

N1

0.00 20.56 20.23 19.43 19.05 82.57 81.04 76.48 83.51 860.86 861.69 734.99 862.03

0.25 19.5(↓ 5%) 20.7(↓ −2%) 18.8(↓ 3%) 20.7(↓ −9%) 72.2(↓ 13%) 75.8(↓ 7%) 69.5(↓ 9%) 84.4(↓ −1%) 734.1(↓ 15%) 770.2(↓ 11%) 665.0(↓ 10%) 978.1(↓ −13%)

0.50 17.7(↓ 14%) 18.6(↓ 8%) 18.3(↓ 6%) 19.0(↓ 0%) 58.3(↓ 29%) 67.0(↓ 17%) 62.1(↓ 19%) 69.5(↓ 17%) 587.8(↓ 32%) 613.6(↓ 29%) 530.7(↓ 28%) 779.5(↓ 10%)

0.75 17.0(↓ 17%) 17.7(↓ 13%) 16.7(↓ 14%) 16.9(↓ 11%) 47.4(↓ 43%) 49.9(↓ 38%) 51.0(↓ 33%) 53.0(↓ 37%) 347.6(↓ 60%) 389.2(↓ 55%) 361.1(↓ 51%) 439.0(↓ 49%)

1.00 15.2(↓ 26%) 16.4(↓ 19%) 16.2(↓ 17%) 15.2(↓ 20%) 34.4(↓ 58%) 34.4(↓ 58%) 36.0(↓ 53%) 36.0(↓ 57%) 90.5(↓ 89%) 90.1(↓ 90%) 94.4(↓ 87%) 92.9(↓ 89%)

N2

0.00 45.13 44.38 43.72 45.19 281.30 285.60 254.02 281.31 MemErr MemErr MemErr MemErr

0.25 53.1(↓ −18%) 53.5(↓ −21%) 51.8(↓ −19%) 69.9(↓ −55%) 308.0(↓ −9%) 294.7(↓ −3%) 255.6(↓ −1%) 378.1(↓ −34%) MemErr MemErr MemErr MemErr

0.50 64.3(↓ −42%) 66.4(↓ −50%) 62.9(↓ −44%) 86.5(↓ −91%) 302.2(↓ −7%) 312.7(↓ −10%) 295.2(↓ −16%) 481.0(↓ −71%) MemErr MemErr MemErr MemErr

0.75 72.9(↓ −62%) 75.8(↓ −71%) 72.5(↓ −66%) 93.0(↓ −106%) 306.0(↓ −9%) 309.0(↓ −8%) 344.4(↓ −36%) 448.5(↓ −59%) MemErr MemErr MemErr MemErr

1.00 79.6(↓ −76%) 79.5(↓ −79%) 79.8(↓ −83%) 79.9(↓ −77%) 364.4(↓ −30%) 325.4(↓ −14%) 322.1(↓ −27%) 318.5(↓ −13%) MemErr MemErr MemErr MemErr

N3

0.00 119.63 118.74 112.48 120.66 1119.16 1116.85 996.56 1116.66 17699.81 17651.30 17260.00 17780.00

0.25 95.9(↓ 20%) 100.4(↓ 15%) 95.3(↓ 15%) 107.9(↓ 11%) 920.7(↓ 18%) 1020.7(↓ 9%) 874.9(↓ 12%) 1157.0(↓ −4%) 15474.4(↓ 13%) 17222.3(↓ 2%) 14700.0(↓ 15%) 17201.0(↓ 3%)

0.50 72.7(↓ 39%) 77.8(↓ 35%) 72.2(↓ 36%) 78.5(↓ 35%) 648.4(↓ 42%) 759.4(↓ 32%) 644.2(↓ 35%) 797.8(↓ 29%) 11976.3(↓ 32%) 14566.7(↓ 17%) 11902.0(↓ 31%) 14729.0(↓ 17%)

0.75 45.5(↓ 62%) 50.2(↓ 58%) 48.5(↓ 57%) 49.6(↓ 59%) 352.6(↓ 68%) 424.9(↓ 62%) 378.1(↓ 62%) 416.8(↓ 63%) 6720.0(↓ 62%) 8556.8(↓ 52%) 7217.0(↓ 58%) 7942.0(↓ 55%)

1.00 22.0(↓ 82%) 23.0(↓ 81%) 22.9(↓ 80%) 22.3(↓ 81%) 47.6(↓ 96%) 45.7(↓ 96%) 45.7(↓ 95%) 45.2(↓ 96%) 116.1(↓ 99%) 115.7(↓ 99%) 115.4(↓ 99%) 115.2(↓ 99%)

Table 2: The relaxed ImageStar reachability methods can reduce significantly the
verification time (in seconds) of MNIST SSN networks except for the one con-
taining max-pooling layers, i.e., N2. The maximum allowable number of attacked
pixels is Nmax = 50 for N1 and N2 and Nmax = 20 for N3.

0 0.2 0.4 0.6 0.8 1

Relaxation Factor (RF)

0.8

0.85

0.9

0.95

R
ob

us
tn

es
s

 = 0.10

relax-star-random
relax-star-area
relax-star-range
relax-star-bound

0 0.2 0.4 0.6 0.8 1

Relaxation Factor (RF)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ob

us
tn

es
s

 = 0.15

relax-star-random
relax-star-area
relax-star-range
relax-star-bound

Fig. 9: The conservativeness of different relaxation heuristics. The area-based and
range-based relaxation strategies outperform others in terms of conservativeness.

usage for the analysis. In the worst case, it can lead to a memory error as shown in
Table 2. Therefore, it is important to have relaxation strategies for max-pooling
layers, which will be investigated in our future work.

5.4 Conservativeness of different relaxation heuristics

We have four relaxation heuristics that can be used in the reachability analysis
of ReLU layers. The verification time improvement of these methods is quite
similar, as shown in Table 2. It is interesting to see how good they are in terms
of conservativeness. Unfortunately, we cannot see it clearly via verification of
SSNs. Although increasing the number of attacked pixels and input size can
eventually show the difference in conservativeness of these methods, it requires
a more powerful computer with massive memory for verification. Therefore, to
determine the best relaxation heuristic in terms of conservativeness, we evaluate
image classification robustness that has been studied extensively recently, and
illustrates the benefits of the relaxation method beyond SSN verification. We
apply our four relaxation heuristics to verify robustness of an MNIST classifica-
tion network [29] that is trained by the DiffAI robust training framework under
the L∞-norm attack, where all pixels of an input image are attacked indepen-

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

R
ob

us
tn

es
s

Relax-star-area

RF = 0
RF = 0.25
RF = 0.5
RF = 0.75
RF = 1
DeepZ
DeepPoly

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

350

400

V
er

ifi
ca

tio
n

T
im

e
(s

)

Relax-star-area

RF = 0
RF = 0.25
RF = 0.5
RF = 0.75
RF = 1
DeepZ
DeepPoly

Fig. 10: When the relaxation factor (RF) ≤ 0.5, the area-based relaxed reacha-
bility is less conservative than DeepZono [28] and DeepPoly [29]. It is also faster
than these approaches when the disturbance is small, i.e., ε ≤ 0.11.

dently by a bounded disturbance defined by ε7. The robustness of the network
is quantified in percentage stating how many images of 100 randomly selected
images are provably robust under the attack, i.e., classified correctly.

Figure 9 illustrates the conservativeness of different relaxation methods. One
can see that the area-based and range-based relaxation strategies consistently
outperform others in terms of conservativeness since their provable numbers of
robust images (in 100 images) under the different sizes of the L∞ norm attacks
are higher than others in all cases. Figure 10 illustrates the conservativeness and
verification time of our area-based relaxed reachability (with different relaxation
factors (RF)) in comparison with DeepZono [28] and DeepPoly [29]. In terms
of conservativeness, the area-based relaxed reachability is better than DeepZono
and DeepPoly when we choose a relaxation factor RF ≤ 0.5. When the dis-
turbance is large, DeepZono and DeepPoly may become very conservative. For
example, when the disturbance bound ε = 0.2, the only 5 and 14 (over 100)
images are proved robust by DeepZono and DeepPoly, respectively. Meanwhile,
without relaxation, i.e., relaxation factor RF = 0, the area-based relaxed reach-
ability can prove 54 images are robust under the attack. It can prove robustness
of 48 and 23 images when the relaxation factors are 0.25 and 0.5, respectively. In
terms of verification time, when the disturbance is small, i.e., ε ≤ 0.11, the area-
based relaxed reachability is faster than DeepZono and DeepPoly. It is slower
than DeepPoly for larger disturbance (except for the case when the relaxation
factor is 1). This increase in the verification time is apparent since DeepZono and
DeepPoly do not solve any LPs for constructing the overapproximate reachable
set of the network while our approach does. Due to using only estimated ranges
of the neurons in constructing the reachable set, DeepZono and DeepPoly are
overly conservative for a large disturbance, proving only a few images are robust.
This reflects the fact that more computation time for optimization is needed to
prove more images robust.

7 These benchmarks were used in VNN-COMP’20.

6 Related Work

To enable neural networks use in safety-critical scenarios, many methods have
recently been proposed to improve their robustness and temper their susceptibil-
ity to adversarial attacks. The following section surveys the landscape of these
approaches in order to better contextualize our work.

SSN Robustness. SSNs are used in visual understanding systems in numerous
contexts, recent works aim to improve the robustness of these models [13,20,23,
25], albeit none that provide worst-case guarantees, as our approach does. For
instance, recent work develops rigorous testing-based approaches to evaluate the
robustness of SSNs, considering a wide range of architectures, and offering an in-
sightful discussion about the comparative robustness of these modalities against
various adversarial attacks [2]. Kamann et al conducted an extensive evaluation
of a state-of-the-art SSN using over 400,000 images and issued a series of rec-
ommendations aimed at improving robustness to common perturbations. Zhou
et al presented an automated method for evaluating robustness of SSNs within
visual systems for autonomous vehicles, which leverages an additional sensor to
generate ground truth labels so that an examination of the classification accu-
racy of an SSN can be evaluated at runtime [47]. Robust training techniques
that incorporate image corruptions and architecture modalities have also been
developed for SSNs [20]. Even though such works provide better understand-
ing, potential defenses against adversarial perturbations, run-time evaluation,
and comparative robustness measures, they cannot provide formal verification
guarantees for SSN robustness as our work does.

Neural network verification and falsification. The bulk of neural network ver-
ification approaches have been aimed at verifying input-output properties of
DNNs. These methods include SMT [18, 19], polyhedral [35, 44], mixed integer
linear programming (MILP) [9], interval arithmetic [38], zonotope [28], lineariza-
tion [39], and abstract-domain [29] approaches. There have also been a number of
works aimed at testing the robustness of networks with respect to bounded input
perturbations such as feature-guided search, global optimization, and game the-
ory [16,42]. One such example is the work of Dreossi et. al where the authors pro-
posed a general definition of robustness for DNNs [8]. Their work categorizes the
existing literature into approaches that consider local robustness properties [6],
and those that focus on verifying the global robustness of the networks [14].
Most of the existing research in this area focuses on robustness of classification
neural networks, specifically image classification. While many approaches aim at
verification, methods also exist for falsification of system specifications, in which
robustness properties are included [12]. However, to the best of our knowledge,
no existing approaches consider verification for SSNs, as we do in this paper.

Sequence Model Verification and Robustness Analysis. Aside from classification
tasks, there are several verification approaches for sequence models. Unlike SSN
and classification networks, the output of sequence models such as recurrent

neural networks (RNNs) depends on spatially or temporally ordered data [4,
41]. While some of these efforts are similar in spirit to our work in expanding
the classes of problems and models for verification, the verification tasks and
approaches differ.

Scalability and specifications. Finally, verification of DNNs is challenging, and
presently the most complex networks remain inaccessible to the majority of
methods. However, several recent approaches have focused on improving the ef-
ficiency of existing methods via parallelization and other techniques [3,35,40]. As
verification work is only meaningful when paired with high-quality specifications,
there has been significant work on the importance of semantics when defining
system specifications against adversarial attacks [27], and our paper contributes
to this direction through our formulation of robustness specifications and metrics
for segmentation tasks.

7 Conclusion

We present the first formal approach to verify robustness of SSNs using relaxed
reachability analysis. Our evaluation has analyzed the robustness and sensitivity
under adversarial attacks on a set of SSNs with typical architectures. From our
experiments, we show that while max-pooling and ReLU layers are useful in
training highly accurate SSNs, they are also the main sources of robustness
and verification performance degradation. SSNs using average-pooling for down-
sampling and transposed convolution for up-sampling seem to be an optimal
choice for achieving high accuracy, robustness, and verification performance.
Additionally, our relaxed reachability approach can help to reduce significantly
the total verification time for networks where the reachability time of ReLU
layers dominates the network’s reachability time, and are applicable to other
networks, such as CNNs used for classification. In the future, we will investigate
new relaxation heuristics for the max-pooling layer and extend this work to
cope with the encoder-decoder SSN architecture where max-unpooling layers
are used for up-sampling operations, instead of dilated/transposed convolution
as we considered in this paper.

Acknowledgments

The material presented in this paper is based upon work supported the De-
fense Advanced Research Projects Agency (DARPA) through contract number
FA8750-18-C-0089, the Air Force Office of Scientific Research (AFOSR) award
FA9550-19-1-0288, and the National Science Foundation (NSF) through grant
numbers 1910017 and 2028001. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of DARPA, AFOSR or NSF.

References

1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
A synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 731–744. PLDI 2019, Association for Computing Machinery,
New York, NY, USA (2019)

2. Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation
models to adversarial attacks. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 888–897 (2018)

3. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying relu neural networks. In: Proceedings of the 32nd International
Conference on Computer Aided Verification. Springer (2020)

4. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. CoRR abs/1906.10395 (2019)

5. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient veri-
fication of relu-based neural networks via dependency analysis. Proceedings of the
AAAI Conference on Artificial Intelligence 34(04), 3291–3299 (Apr 2020)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57 (2017)

7. Dathathri, S., Dvijotham, K., Kurakin, A., Raghunathan, A., Uesato, J., Bunel,
R., Shankar, S., Steinhardt, J., Goodfellow, I., Liang, P., Kohli, P.: Enabling cer-
tification of verification-agnostic networks via memory-efficient semidefinite pro-
gramming (2020)

8. Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-
Chanlatte, M., Seshia, S.A.: Verifai: A toolkit for the formal design and analysis
of artificial intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification. pp. 432–442. Springer International Publishing, Cham (2019)

9. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. arXiv preprint arXiv:1709.09130 (2017)

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

11. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control pp. 1–1 (2020)

12. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Veri-
fAI. In: 32nd International Conference on Computer Aided Verification (CAV) (Jul
2020)

13. Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic
segmentation under domain shift in cardiac mri (2020)

14. Gopinath, D., Katz, G., Pasareanu, C.S., Barrett, C.: Deepsafe: A data-driven
approach for assessing robustness of neural networks. In: Lahiri, S., Wang, C. (eds.)
Proceedings of the 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA ’18). Lecture Notes in Computer Science, vol.
11138, pp. 3–19. Springer (Oct 2018), los Angeles, California

15. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability analysis of
neural-network controlled systems. ACM Transactions on Embedded Computing
Systems (TECS) 18(5s), 1–22 (2019)

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification. pp. 3–29.
Springer (2017)

17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Hybrid Systems:
Computation and Control (HSCC) (2019)

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification. pp. 97–117. Springer (2017)

19. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443–452. Springer (2019)

20. Klingner, M., Bar, A., Fingscheidt, T.: Improved noise and attack robustness for
semantic segmentation by using multi-task training with self-supervised depth es-
timation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops (June 2020)

21. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

22. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

23. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.:
Image segmentation using deep learning: A survey (2020)

24. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 2020)

25. Oliveira, G., Bollen, C., Burgard, W., Brox, T.: Efficient and robust deep networks
for semantic segmentation. The International Journal of Robotics Research 37,
027836491771054 (06 2017)

26. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global
robustness evaluation of deep neural networks with provable guarantees for the l 0
norm. arXiv preprint arXiv:1804.05805 (2018)

27. Seshia, S.A., Desai, A., Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Shivaku-
mar, S., Vazquez-Chanlatte, M., Yue, X.: Formal specification for deep neural
networks. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for Verification
and Analysis. pp. 20–34. Springer International Publishing, Cham (2018)

28. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems.
pp. 10825–10836 (2018)

29. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
41 (2019)

30. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, 2nd edn.
(2021)

31. Thoma, M.: A survey of semantic segmentation. arXiv preprint arXiv:1602.06541
(2016)

32. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

33. Tran, H.D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using imagestars. In: 32nd International Conference on Computer-
Aided Verification (CAV). Springer (July 2020)

34. Tran, H.D., Cei, F., Lopez, D.M., Johnson, T.T., Koutsoukos, X.: Safety veri-
fication of cyber-physical systems with reinforcement learning control. In: ACM
SIGBED International Conference on Embedded Software (EMSOFT’19). ACM
(October 2019)

35. Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xiang, W., John-
son, T.T.: Parallelizable reachability analysis algorithms for feed-forward neural
networks. In: 7th International Conference on Formal Methods in Software Engi-
neering (FormaliSE2019), Montreal, Canada (2019)

36. Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xiang, W., Johnson,
T.T.: Star-based reachability analsysis for deep neural networks. In: 23rd Interna-
tional Symposisum on Formal Methods (FM’19). Springer International Publishing
(October 2019)

37. Tran, H.D., Xiang, W., Johnson, T.T.: Verification approaches for learning-enabled
autonomous cyber-physical systems. IEEE Design & Test (2020)

38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems. pp.
6369–6379 (2018)

39. Weng, T.W., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Boning, D., Dhillon, I.S.,
Daniel, L.: Towards fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699 (2018)

40. Wu, H., Ozdemir, A., Zeljić, A., Julian, K., Irfan, A., Gopinath, D., Fouladi, S.,
Katz, G., Pasareanu, C., Barrett, C.: Parallelization techniques for verifying neural
networks. In: 2020 Formal Methods in Computer Aided Design (FMCAD). pp.
128–137 (2020)

41. Wu, J., Li, X., Ao, X., Meng, Y., Wu, F., Li, J.: Improving robustness and generality
of nlp models using disentangled representations (2020)

42. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based ap-
proximate verification of deep neural networks with provable guarantees. Theoret-
ical Computer Science 807, 298–329 (Feb 2020)

43. Xiang, W., Musau, P., Wild, A.A., Lopez, D.M., Hamilton, N., Yang, X., Rosen-
feld, J., Johnson, T.T.: Verification for machine learning, autonomy, and neural
networks survey. arXiv preprint arXiv:1810.01989 (2018)

44. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety veri-
fication for neural networks with relu activations. arXiv preprint arXiv:1712.08163
(2017)

45. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: Attacks and defenses for
deep learning. IEEE transactions on neural networks and learning systems 30(9),
2805–2824 (2019)

46. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 31, pp. 4939–4948. Curran
Associates, Inc. (2018)

47. Zhou, W., Berrio, J., Worrall, S., Nebot, E.M.: Automated evaluation of semantic
segmentation robustness for autonomous driving. IEEE Transactions on Intelligent
Transportation Systems 21, 1951–1963 (2020)

	Robustness Verification of Semantic Segmentation Neural Networks using Relaxed Reachability

