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Abstract— The reachable set estimation and control problems
for continuous-time switched linear systems are addressed in
this paper. First, a general result on reachable set estimation
for switched system is proposed based on a Lyapunov function
approach. Then, with the help of a class of time-scheduled
Lyapunov functions, a numerically tractable sufficient condition
ensuring the system state bounded in a prescribed set is derived
for switched systems under dwell time constraint. Moreover, a
time-scheduled state feedback controller is designed to ensure
the state trajectories of the closed-loop system are confined in
a prescribed set. Finally, a networked control system subject
to packet dropouts is modeled as a switched system with dwell
time constraints, and the controller design problem is studied
as an application of our results.

I. INTRODUCTION

Switched systems have emerged as an important class
of hybrid systems and represent an active area of current
research in the field of control systems [1]–[3]. A switched
system is composed of a family of continuous or discrete-
time subsystems along with a switching rule governing the
switching between the subsystems. Generally, the stability
and stabilization problems are the main concerns in the field
of switched systems. It has been established that Lyapunov
function techniques are effective to deal with stability and
stabilization problems for switched systems, e.g. see [4]–[8].
Combining multiple Lyapunov function (MLF), the dwell
time and average dwell time properties of relatively slowly
switched systems have been investigated [9]–[15].

Reachable set estimation aims to derive a closed bounded
set that constrains all the state trajectories generated by a
dynamic system with a prescribed class of initial state set
and inputs. Reachable set estimation is not only of theoret-
ical interest in robust control theory [16], but also closely
related to practical engineering for the safety verification
problems [17]. In some early work, reachable set bounding
was considered in the context of state estimation and it has
later received a lot of attention in parameter estimation, see
[18] and references therein. Recently, employing ellipsoidal
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techniques based on Lyapunov function approaches to esti-
mate the reachable sets for different class of systems attracts
many researchers’ attention. In the framework of bounding
ellipsoid, the quadratic Lyapunov function has played a
fundamental role in the reachable set estimation problem,
and it has been developed to time-delay systems [19]–[21],
singular systems [22], discrete-time switched systems [23].
However, according to the best of the authors’ knowledge,
the reachable set estimation for continuous-time switched
systems with constrained switching law, has not been fully
investigated, and it motivates our study in this paper.

In this paper, the problems of reachable set estimation and
control synthesis for continuous-time switched linear systems
will be investigated. First, a general result based on Lyapunov
function approach is presented. Then, under the framework
of dwell time and with the help of a class of time-scheduled
quadratic Lyapunov functions, a linear matrix inequality
(LMI) based sufficient condition is proposed to estimate the
reachable set. For the control synthesis, a time-scheduled
feedback controller is designed to ensure the state trajec-
tories being contained in a prescribed set and, moreover,
an optimization problem is formulated to obtain an optimal
controller gain to make the reachable set of closed-loop
system as small as possible. As an application of our result,
the control problem for a networked control system with
package dropouts is studied. Based on our derived approach,
the controller can be designed with an attempt to constrain
state trajectories in a prescribed bounding ellipsoidal region.

Notation: The notations in this paper are fairly standard.
Sn×n
+ is the set of real symmetric positive definite n × n

matrices. In symmetric block matrices, we use * as an ellipsis
for the terms that are introduced by symmetry. diag{· · · }
denotes a block-diagonal matrix and int[·] rounds the element
to the nearest integer towards zero.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider a continuous-time switched linear system
in the form of

ẋ(t) = Aσ(t)x(t) +Bω,σ(t)ω(t) +Bu,σ(t)u(t) (1)

where x(t) ∈ Rnx are the state of the system, and the initial
state x0 is assumed to be settled in a bounded ellipsoid as

x0 ∈ X0 , {x0 ∈ Rnx | x⊤0 R0x0 ≤ 1, R0 ∈ Snx×nx
+ } (2)

and ω(t) ∈ Rnω is the disturbance input vector which is
assumed to satisfy the following ellipsoidal constraint

ω(t) ∈ W , {ω ∈ Rnω | ω⊤Rωω ≤ 1, Rω ∈ Snω×nω
+ } (3)



and u(t) ∈ Rnu is the control input to be designed.
Define an index set M , {1, 2, . . . , N}, where N is the

number of modes and, σ : R≥0 → M denotes the switching
function, which is assumed to be a piecewise constant
function continuous from right. The switching instants are
expressed by a sequence S , {tk}k∈N, where t0 denotes the
initial time and tk denotes the kth switching instant. Then,
we define Ii , {t ∈ R≥0 | σ(t) = i, i ∈ M} to denote the
activation time interval for ith mode.

The first problem considered in this paper is the reachable
set estimation problem for switched system (1) with control
input u(t) = 0, and the initial state satisfying (2), disturbance
input satisfying (3). The reachable set is defined as

Rx , {x ∈ Rnx | x(t), x0, ω(t) satisfy (1), (2), (3)} (4)

Then, the mode-dependent state feedback controller is
considered, which has a time-scheduled structure as

u(t) = Kσ(t)(t)x(t) (5)

Substituting above controller (5) into system (1), the
closed-loop system becomes

ẋ(t) = Āσ(t)(t)x(t) +Bω,σ(t)ω(t) (6)

where Āσ(t)(t) = Aσ(t) +Bu,σ(t)Kσ(t)(t).
The control objective is to ensure the state trajectory x(t)

contained in a given set

R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1, Rx ∈ Snx×nx
+ } (7)

The above two problems are the main concerns in this
paper. In the rest of this paper, the reachable set estimation
problem will be studied at first, then based on the reachable
set estimation results, the state feedback controller design
problem will be addressed.

III. REACHABLE SET ESTIMATION

A. General Lemma

First, a general lemma is presented to introduce the main
idea to determine the over approximate set R̃x for switched
system (6), note that switched system (1) with u(t) = 0 is a
particular case of Āi(t) being time-invariant.

Lemma 1: Consider switched system (6) under initial state
condition (2) and disturbance input condition (3). If there
exist a family of Lyapunov functions Vi : Rnx → R≥0,
i ∈ M, satisfying Vi(0) = 0 and Vi(x) > 0, ∀x ̸= 0,
∀i ∈ M, and scalars α > 0, 0 < β ≤ 1 such that

Fi(t) ≤ 0, ∀t ∈ Ii, ∀i ∈ M (8)
Gi,j(tk) ≤ 0, ∀tk ∈ S, i ̸= j,∀i, j ∈ M (9)

Vi(x0) ≤ x⊤0 R0x0, ∀i ∈ M (10)

where Fi(t) = V̇i(x(t)) + αVi(x(t)) − αω⊤(t)Rωω(t) and
Gi,j(tk) = Vi(x(t

+
k )) − βVj(x(t

−
k )) + β − 1. Then, the

reachable set Rx satisfies Rx ⊆ R̃x , {x ∈ Rnx | Vi(x) ≤
1, i ∈ M}.

Proof: Define the following Lyapunov function as

V (t) =
∑

i∈M
ξi(t)Vi(x(t)) (11)

where ξi : R≥0 → {0, 1} and
∑

i∈M ξi(t) = 1 is the
indicator function indicating the active modes at t.

First we consider any t ∈ [tk, tk+1) ⊂ Ii, ∀i ∈ M. (8)
implies V̇ (t) ≤ −αV (t) + αω⊤(t)Rωω(t), t ∈ [tk, tk+1).
Multiply both sides of this inequality with eα(t−tk) and then
integrating it over [tk, t), we have V (t) ≤ e−α(t−tk)V (t+k )+∫ t

tk
e−α(t−s)ω⊤(s)Rωω(s)ds. Due to ω⊤(t)Rωω(t) ≤ 1,

∀t ∈ R≥0, we have the following result

V (t) ≤ e−α(t−tk)V (t+k ) +

∫ t

tk

e−α(t−s)ds

= e−α(t−tk)V (t+k ) + 1− e−α(t−tk)

(12)

and it can be rewritten to

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1), t ∈ [tk, tk+1) (13)

Next, we consider tk ∈ S . From (9), we can obtain
V (t+k ) ≤ βV (t−k ) + 1− β, tk ∈ S, which equals to

V (t+k )− 1 ≤ β(V (t−k )− 1), tk ∈ S (14)

Combining (13) and (14), for ∀t ∈ R≥0, it can be obtained
V (t) − 1 ≤ · · · ≤ βNum(t−t0)e−α(t−t0)(V (t0) − 1), where
Num(t − t0) is the number of switchings in [t0, t). Due to
α > 0 and 0 < β ≤ 1, it means that V (t) − 1 ≤ V (t0) −
1, ∀t ∈ R≥0. Moreover, (10) implies V (t0) ≤ x⊤0 R0x0 ≤ 1,
and it yields V (t) ≤ 1, ∀t ∈ R≥0 holds, so x(t) ∈ R̃x, ∀t ∈
R≥0, where R̃x , {x ∈ Rnx | Vi(x) ≤ 1, i ∈ M}.

Although Lemma 1 provides a general framework to deal
with the reachable set estimation problem, it is trivial in
actual use, since it does not provide any available computa-
tional techniques for the construction of Lyapunov functions
Vi(x(t)), i ∈ M and moreover, the proposed condition (9)
requires us to check the values of Lyapunov functions at
every the switching instant tk ∈ S. However, the switching
instant sequence S usually cannot be specified in advance,
and it is impossible to check Lemma 1 for all switching
instants tk in the case of k → ∞.

B. Time-Scheduled Multiple Lyapunov Functions

Based on Lemma 1, we particularly consider a class of
switched system with dwell-time constraint.

Definition 1: Given a switching signal function σ(t) with
a generated switching sequence S, τmin = infk∈N{tk+1−tk}
is called the minimum dwell time of σ(t). Dτmin , {σ | σ :
R≥0 → M, tk+1 − tk ≥ τmin, ∀k ∈ N} denotes the set of
all switching policies with dwell time greater than τmin.

Then, inspired by [11], [12], [15], we consider a class of
time-scheduled multiple Lyapunov functions as follow

Vi(x(t)) = x⊤(t)Pi(t)x(t), t ∈ R≥0, i ∈ M (15)

where Pi(t) ∈ Snx×nx
+ , i ∈ M have the following structure:

Consider the interval [tk, tk + τmin), we divide it into L
segments described as Lk,q , [tk + θq, tk + θq+1), q =
0, 1, . . . , L−1 of equal lengths h = τmin/L, and then θ0 = 0
and θq = qh = qτmin/L. We consider a class of continuous
matrix function Pi(t), t ∈ [tk, tk + τmin) chosen to be linear
within each segments Lk,q , q = 0, 1, . . . , L − 1. Explicitly,



we can see that
∪L−1

n=0 Lk,n = [tk, tk + τmin) and Lk,n ∩
Lk,m = ∅, n ̸= m. Letting Pi,q = Pi(tk + θq), then since
the matrix function Pi(t) is piecewise linear in [tk, tk+τmin),
it can be expressed in terms of the values at dividing points
using a linear interpolation formula, that is, for 0 ≤ µ ≤ 1,
q = 0, 1, . . . , L− 1,

Pi(t) = Pi(µ) = (1− µ)Pi,q + µPi,q+1, t ∈ Lk,q, i ∈ M
(16)

where µ = L(t− tk − θq)/τmin.
As a result, the continuous matrix function Pi(t) ∈

Snx×nx
+ , i ∈ M can be completely determined by Pi,q ∈

Snx×nx
+ , q = 0, 1, . . . , L, i ∈ M, in interval [tk, tk + τmin).
Then, due to [tk, tk+τmin) ⊆ [tk, tk+1), for the remaining

time in [tk, tk+1) denoted by Lk,L , [tk,min, tk+1), Pi(t),
i ∈ M is set to be

Pi(t) = Pi,L, t ∈ Lk,L, i ∈ M (17)

In summary, the Pi(t), i ∈ M in Lyapunov function in
(15) is defined as

Pi(t) =

{
Pi(µ), t ∈ Lk,q, q = 0, 1, . . . , L− 1
Pi,L, t ∈ Lk,L

(18)

where µ is defined in (16).

C. Reachable Set Estimation under Dwell Time Constraint

Now, we are ready to propose out main result as follows.
Theorem 1: Given dwell time τmin > 0 and consider

switched system (1) with σ(t) ∈ Dτmin under initial state
condition (2), disturbance input condition (3) and u(t) = 0. If
there exist a set of matrices Pi,q ∈ Snx×nx

+ , q = 0, 1, . . . , L,
i ∈ M and a scalar α > 0 such that for ∀i, j ∈ M[

Ξi,q +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
≺ 0, q = 0, . . . , L− 1 (19)[

Ξi,q+1 +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
≺ 0, q = 0, . . . , L− 1 (20)[

Ξi,L ∗
B⊤

ω,iPi,L −αRω

]
≺ 0 (21)

Pi,0 − Pj,L ≺ 0, i ̸= j (22)
Pi,0 −R0 ≺ 0 (23)

where Ξi,q = A⊤
i Pi,q + Pi,qAi + αPi,q and Ψi,q =

L(Pi,q+1 −Pi,q)/τmin. Then, the reachable set Rx ⊆ R̃x ,
{x ∈ Rnx | x⊤Pi,qx ≤ 1, q = 0, 1, . . . , L, i ∈ M}.

Proof: Construct Lyapunov function as

V (t) =
∑

i∈M
ξi(t)x

⊤(t)Pi(t)x(t) (24)

where Pi(t), i ∈ M, is defined by (18) and ξi(·) is defined
same as (11).

First, let us consider Fi(t) = V̇ (t) + αV (t) −
αω⊤(t)Rωω(t), which can be rewritten to

Fi(t) = χ⊤(t)

[
Ξi(t) + Ṗi(t) ∗
B⊤

ω,iPi(t) −αRω

]
χ(t) (25)

where χ⊤(t) = [x⊤(t) ω⊤(t)] and Ξi(t) = A⊤
i Pi(t) +

Pi(t)Ai + αPi(t).

TABLE I
COMPUTATIONAL COMPLEXITIES OF THEOREM 1 WITH A FIXED α

Number of Decision Variables LMI Constraints Size
nN(L+ 1)(n+ 1)/2 2nN(N + 2L+ 1)

Suppose σ(t) = i, t ∈ Lk,q , q = 0, . . . , L− 1, one has[
Ξi(t) + Ṗi(t) ∗
B⊤

ω,iPi(t) −αRω

]
= (1− µ)Πi,1 + µΠi,2 (26)

where Πi,1 =

[
Ξi,q +Ψi,q ∗
B⊤

ω,iPi,q −αRω

]
and Πi,2 =[

Ξi,q+1 +Ψi,q+1 ∗
B⊤

ω,iPi,q+1 −αRω

]
.

Furthermore, we can see Ṗi(t) = (Pi,q+1 − Pi,q)µ̇,
t ∈ Lk,q , q = 0, . . . , L − 1, and because of µ = L(t −
tk − θq)/τmin, it implies µ̇ = L/τmin, leading to Ṗi(t) =
Ψi,q, t ∈ Lk,q, q = 0, . . . , L− 1,. By (19), (20), it leads to

Fi(t) < 0, ∀t ∈
∪L−1

n=0
Lk,n = [tk, tk + τmin) (27)

Then, we consider t ∈ Lk,L. Since Pi(t) = Pi,L, t ∈ Lk,L,
we have Ṗi(t) = 0, ∀t ∈ Lk,L, thus (21) guarantees that
Fi(t) < 0, ∀t ∈ Lk,L. Together with (27), we can conclude
that Fi(t) < 0, ∀t ∈ Ii, ∀i ∈ M, which means (8) in
Lemma 1 holds.

Next, (22) ensures (9) holds with β = 1 and (23)
guarantees (10) holds. Therefore, we have the reachable set
Rx ⊆ R̃x , {x ∈ Rnx | x⊤Pi,qx ≤ 1, q = 0, 1, . . . , L, i ∈
M} by Lemma 1.

Remark 1: Parameter L implies the number of segments
consisting of the dwell time interval [tk, tk+ τmin). A larger
L yields a finer division of [tk, tk + τmin), and a less
conservative result can be consequently obtained, which will
be demonstrated by a numerical example later. However,
the computational cost increases as L grows, since a larger
L inevitably introduces more decision variables and LMI
constraints, see TABLE I for the computational complexity
analysis for Theorem 1.

The set R̃x is usually expected to be as small as possible
to achieve a precise estimation of reachable set Rx. Based
on Theorem 2, one may add an additional constraint that

Pi,q ≽ ϵI, ϵ > 0, ∀q = 0, 1, . . . , L, ∀i ∈ M (28)

which implies that ϵx⊤(t)x(t) ≤ x⊤(t)Pi,qx(t) ≤ 1, namely
x(t) ∈ B(0, 1/

√
ϵ) , {x ∈ Rn | ∥x∥ ≤ 1/

√
ϵ}, ∀t ∈ R≥0,

so we have to maximize ϵ to obtain a smallest reachable set
with respect to ϵ. Given an L, the smallest ball B(0, 1/

√
ϵ) ,

{x ∈ Rn | ∥x∥ < 1/
√
ϵ} containing the trajectories

of state x(t) in the framework of our approach can be
obtained. Based on Theorem 1, an optimization problem can
be formulated by adding (28) with (19)–(23) as follows

max ϵ s.t. (28) and (19)− (23) (29)

In the extreme case with L = 0, Pi,q , shrinks to Pi,
moreover, due to (35), we have to choose Pi = Pj , i ̸= j.
Thus, Theorem 2 is reduced to the following corollary.



Corollary 1: Consider switched system (1) under initial
state condition (2), disturbance input condition (3) and
u(t) = 0. If there exist a matrix P ∈ Snx×nx

+ and a scalar
α > 0 such that[

A⊤
i P + PAi + αP ∗

B⊤
ω,iP −αRω

]
≺ 0, ∀i ∈ M (30)

P −R0 ≺ 0 (31)

Then, the reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Px ≤
1}.

Remark 2: Corollary 1 is actually the straightforward re-
sult derived based on the well-known common Lyapunov
function approach. It can be observed that there is no
restriction for the dwell time, this means that it can be used
for arbitrary switching case which includes broader classes
of switching signals, however, the cost is the increase of
conservativeness of the estimation results.

IV. TIME-SCHEDULED FEEDBACK CONTROLLER DESIGN

In this section, the controller design problem will be con-
sidered in the framework of dwell time. Based on Theorem
1, the following result can be derived for controller design.

Theorem 2: Given dwell time τmin > 0 and consider
switched system (1) with σ(t) ∈ Dτmin under initial state
condition (2) and disturbance ω(t) satisfying (3). If there
exist a set of matrices Si,q ∈ Snx×nx

+ , Xi,q ∈ Rnu×nx ,
q = 0, 1, . . . , L, i ∈ M and a scalar α > 0 such that for
∀i, j ∈ M[

Ξi,q −Ψi,q ∗
B⊤

ω,i −αRω

]
≺ 0, q = 0, . . . , L− 1 (32)[

Ξi,q+1 −Ψi,q ∗
B⊤

ω,i −αRω

]
≺ 0, q = 0, . . . , L− 1 (33)[

Ξi,L ∗
B⊤

ω,i −αRω

]
≺ 0 (34)

Sj,L − Si,0 ≺ 0, i ̸= j (35)

R−1
0 − Si,0 ≺ 0 (36)

Si,q −R−1
x ≺ 0, q = 0, . . . , L− 1 (37)

where Ξi,q = AiSi,q+Si,qA
⊤
i +Bi,uXi,q+X

⊤
i,qB

⊤
i,u+αSi,q

and Ψi,q = L(Si,q+1 − Si,q)/τmin. Then, the closed-loop
system (6) with controller gain Ki(t) = Xi(t)S

−1
i (t) has a

reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}, where
Si(t) and Xi(t) are given by

Si(t) =

{
(1− µ)Si,q + µSi,q+1 t ∈ Lk,q

Si,L t ∈ Lk,L
(38)

Xi(t) =

{
(1− µ)Xi,q + µXi,q t ∈ Lk,q

Xi,L t ∈ Lk,L
(39)

where µ = L(t− tk)/τmin − q and q is determined by

q =

{
int[L(t− tk)/τmin] 0 ≤ m < L

L q ≥ L
(40)

Proof: Since Si,q ≻ 0, it implies Si(t) defined by
(60) is positive definite, and thus we have S−1

i (t) ≻ 0.

Then, a Lyapunov function for closed-loop system (6) can
be constructed as follows:

V (t) =
∑

i∈M
ξi(t)x

⊤(t)S−1
i (t)x(t) (41)

where ξi(·) is defined same as (11).
Substituting Xi(t) = Ki(t)Si(t), (32)–(34) ensure the

following inequality holds[
Āi(t)Si(t) + Si(t)Ā

⊤
i (t) + αSi(t)− Ṡi(t) ∗
B⊤

ω,i −αRω

]
≺ 0

(42)
Multiplying both side of (42) by diag{S−1

i (t), I} and
using Ṡ−1

i (t) = −S−1
i (t)Ṡi(t)S

−1
i (t), we have[

Ξi(t) ∗
B⊤

ω,iS
−1
i (t) −αRω

]
≺ 0 (43)

where Ξi(t) = Ā⊤
i (t)S

−1
i (t) + S−1

i (t)Āi(t) + Ṡ−1
i (t) +

αS−1
i (t). It implies (8) in Lemma 1 holds.

Then, we consider (35) and (36). If (35) holds, it equals

to Φ =

[
−S−1

j,L I

I −Si,0

]
≺ 0 by Schur complement. Then,

further considering the Schur complement of Φ, we obtain
S−1
i,0 −S−1

j,L ≺ 0 implying (9) in Lemma 1 holds with β = 1.
Similarly, (10) can be guaranteed by (36). Thus, we have
the reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤S−1

i,q x ≤
1, q = 0, 1, . . . , L, i ∈ M} by Lemma 1. Finally, from (37),
we have x⊤Rxx < x⊤S−1

i,q x ≤ 1, q = 0, 1, . . . , L, i ∈ M,
which implies Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

Remark 3: In order to obtain a optimized controller for
the smallest reachable set estimation for closed loop system,
we can add the following constraint

Si,q − δI ≺ 0, δ > 0, q = 0, . . . , L, i ∈ M (44)

The above inequality ensures the x(t) ∈ B(0,
√
δ) , {x ∈

Rn | ∥x∥ ≤
√
δ}. Given an L, the smallest ball B(0,

√
δ)

containing the reachable set R̃x can be obtained by the
following optimization problem

min δ s.t. (44) and (32)− (36) (45)
Corollary 2: Consider switched system (1) under initial

state condition (2) and disturbance ω(t) satisfying (3). If
there exist matrices S ∈ Snx×nx

+ , Xi ∈ Rnω×nx
+ , i ∈ M and

a scalar α > 0 such that[
Ξi ∗
B⊤

ω,i −αRω

]
≺ 0, ∀i ∈ M (46)

R−1
0 ≺ S ≺ R−1

x (47)

where Ξi,q = AiS+SA⊤
i +Bu,iXi +X⊤

i B
⊤
u,i +αS. Then,

the closed-loop system (6) with controller gain Ki = XiS
has a reachable set Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

Proof: It can be easily proved by letting L = 0 in
Theorem 2, so the proof is omitted here.

Though Corollary 2 provides constant feedback gains Ki,
i ∈ M which does not require online computation as
Ki(t), i ∈ M do. This feature is more convenient for
controller realization in practice, but the conservatism grows
in comparison with the case of L > 0.
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Fig. 1. Packet dropouts in networked control system

V. APPLICATION IN NETWORKED CONTROL SYSTEMS

Consider a networked control system with packet dropouts
in both forward and backward channels, where the packet
dropouts can be modeled as switches open behavior, which is
illustrated in Fig. 1. When T1 is closed, the controller output
is successfully transmitted to the actuator; whereas when it
is open, the output of the switch becomes zero and a packet
is lost, and we have in this case u(t) = 0. The situation is
the same for the backward channel. In absence of packet
dropouts, the state feedback controller works well during
interval Γ1,k , [t2k, t2k+1), k ∈ N. However, due to the
occurrence of packet dropouts, the controller is considered
to be not available, namely u(t) = 0, in the time interval
Γ2,k , [t2k+1, t2k+2), k ∈ N.

Assumption 1: The following assumptions are made:
1) There exists a uniform lower-bound τmin on the lengths

of Γ1,k, k ∈ N, that is t2k+1 − t2k ≥ τmin, ∀k ∈ N.
2) There exist a uniform upper-bound ψmax on the lengths

of Γ2,k, k ∈ N, that is t2k+2− t2k+1 ≤ ψmax, ∀k ∈ N.
The plant we consider is a linear system

ẋ(t) = Ax(t) +Bωω(t) +Buu(t) (48)

and the controller is considered to be u(t) = K(t)x(t), t ∈
Γ1,k. In summary, the networked control system with packet
dropouts can be described as follows

ẋ(t) = Aσ(t)(t)x(t) +Bωω(t) (49)

where A1(t) = A + BuK(t) and A2(t) = A, and the
switching function σ(t) is

σ(t) =

{
1 t ∈ Γ1,k

2 t ∈ Γ2,k
(50)

Theorem 3: Under Assumption 1 and consider networked
control system (48) under initial state condition (2) and
disturbance ω(t) satisfying (3). If there exist a set of matrices
Si,q ∈ Snx×nx

+ , Xi,q ∈ Rnu×nx
+ , q = 0, 1, . . . , L, i = 1, 2

and a scalar α > 0 such that[
Ξ1,q −Ψ1,q ∗

B⊤
ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (51)[

Ξ1,q+1 −Ψ1,q ∗
B⊤

ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (52)[

Ξ1,L ∗
B⊤

ω −αRω

]
≺ 0 (53)[

Ξ2,q −Ψ2,q ∗
B⊤

ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (54)

[
Ξ2,q+1 −Ψ2,q ∗

B⊤
ω −αRω

]
≺ 0, q = 0, . . . , L− 1 (55)

S1,L − S2,0 ≺ 0 (56)
S2,q − S1,0 ≺ 0, q = 0, . . . , L (57)

R−1
0 − Si,0 ≺ 0, i = 1, 2 (58)

Si,q −R−1
x ≺ 0, i = 1, 2, q = 0, . . . , L (59)

where Ξ1,q = AS1,q + S1,qA
⊤ + BuX1,q + X⊤

1,qB
⊤
u +

αS1,q , Ξ2,q = ASi,q + S2,qA
⊤ + αS2,q and Ψ1,q =

L(S1,q+1 − S1,q)/τmin, Ψ2,q = L(S2,q+1 − S2,q)/ψmax.
Then, the closed-loop system (49) with controller gain
K(t) = X1(t)S

−1
1 (t), t ∈ Γ1,k has a reachable set Rx ⊆

R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}, where S1(t) and X1(t) are

S1(t) =

{
(1− µ)S1,q + µS1,q+1 t ∈ Lk,q

S1,L t ∈ Lk,L
(60)

X1(t) =

{
(1− µ)X1,q + µX1,q t ∈ Lk,q

X1,L t ∈ Lk,L
(61)

where µ = L(t− t2k)/τmin − q and q is determined by

q =

{
int[L(t− t2k)/τmin] 0 ≤ m < L

L q ≥ L
(62)

Proof: By the similar guidelines in Theorem 2, condi-
tions (51), (52) and (53) ensures that (8) in Lemma 1 holds
for interval Γ1,k, and (54), (55) guarantee (8) in Lemma
1 holds for Γ2,k. Then, (56) and (57) implies (9) holds
for switching instants t2k+1, t2k, respectively. Finally, (10)
can be guaranteed by (58). Thus, according Lemma 1, the
reachable set is obtained as Rx ⊆ R̃x , {x ∈ Rnx |
x⊤S−1

i,q x ≤ 1, q = 0, 1, . . . , L, i = 1, 2}. Using (59), we
have Rx ⊆ R̃x , {x ∈ Rnx | x⊤Rxx ≤ 1}.

By adding the following constraint

Si,q − δI ≺ 0, δ > 0, q = 0, . . . , L, i = 1, 2 (63)

The smallest ball B(0,
√
δ) containing the reachable set R̃x

can be obtained by the following optimization problem

min δ s.t. (63) and (51)− (58) (64)

Example 1: Consider the plant described by

A =

[
1.5 2.5
1.5 1.2

]
, Bu =

[
0.2
0.5

]
, Bω =

[
0
0

]
The initial state is assumed to satisfy x0 ∈ {x0 ∈ Rn |

∥x0∥ ≤ 1}, and the control objective is to ensure the state
trajectories satisfies x(t) ∈ {x ∈ Rn | ∥x∥ ≤ 2}. Assume
that the minimal reliable time for a group of successfully
transmitted information is τmin = 0.5 second, and the
maximal time for a group of successive packet dropouts is
ψmax = 0.1 second. Let α = 0 due to Bω = [0 0]⊤, and
we can find feasible solution to LMIs (51)–(59) with L = 1.

Given an initial state x0 = [0.6 0.8]⊤, the state response is
illustrated in Fig. 2, it can be observed that the state trajectory
satisfies x(t) ∈ {x ∈ Rn | ∥x∥ ≤ 2}. Moreover, we generate
500 random state trajectories with random packet dropouts
whose lengths are less than 0.1 second, it can be seen that
all the trajectories are in the prescribed ball B(0, 2), which
are shown in Fig. 3.
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Fig. 2. State response of networked control system with packet dropouts
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Fig. 3. 500 random state trajectories with random packet dropouts. All the
trajectories x(t) generated from the ∥x0∥ ≤ 1 are bounded by ∥x(t)∥ ≤ 2.

Finally, in order the show how parameter L works for the
controller design, different L are selected for optimization
problem (64). From L = 1 to L = 5, the smallest δ are
computed, which are shown in Table II. In Table II, we can
see that δ monotonically decreases as L increases, this is
consistent with Remark 1. However, a selection of larger L
has to afford more computational cost, the computation time
grows as L increases in Table II.

TABLE II
δ AND COMPUTATION TIME (C.T.) WITH L = 1, 2, 3, 4, 5

L = 1 L = 2 L = 3 L = 4 L = 5
δ 1.8795 1.5075 1.4615 1.4434 1.4334

C.T. 0.296 s 0.433 s 0.561 s 0.734 s 0.905 s

VI. CONCLUSIONS

By employing a class of time-scheduled Lyapunov func-
tions, the reachable estimation and control problems for
switched linear systems under dwell time constraint are
investigated in this paper. A sufficient condition has been
proposed to estimate the reachable set of switched system
by bounding ellipsoids, then based on the estimation result,
a time-scheduled state feedback controller gains are obtained,
which can ensure the state trajectories of closed-loop system
in a prescribed set. Finally, the controller design result

is applied into the networked control system with packet
dropouts.
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