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Abstract— This paper addresses the problem of reachable
set estimation for discrete-time switched systems under arbi-
trary switching. By introducing a novel conception called M -
step sequence which is capable of characterizing all possible
subsystem activation orders during M discrete-time steps, a
Lyapunov function based approach is proposed to derive a set of
bounding ellipsoids to estimate the reachable set. The proposed
approach can cover the previous switched Lyapunov function
approach and yields less conservativeness. Moreover, it can be
shown that the M -step sequence method can also reduce the
conservativeness in stability analysis for discrete-time switched
systems under arbitrary switching in contrast to switched
Lyapunov function method. Several numerical examples are
provided to illustrate our approach.

I. INTRODUCTION

A switched system is composed of a family of continuous
or discrete-time subsystems, described by differential or
difference equations, respectively, along with a switching
rule governing the switching between the subsystems. The
motivation for studying such switched systems comes from
the fact that switched system can be efficiently used to model
many practical systems that are inherently multi-model, thus
several dynamical subsystem models are required to de-
scribe their behavior. For example, several real-world cyber-
physical systems and industrial processes exhibit switching
and hybrid nature intrinsically. Generally, the stability and
stabilization problems are the main concerns in the field of
switched systems, e.g., see [1]–[4] and the references cited
therein. One can study the stability and other properties
of switched systems with a given the switching rule as
a prescribed state space partitioning [5]–[7] or with some
known constraints on switching sequence such as dwell
time [8] or average dwell time [9] restrictions. For instance,
combining multiple Lyapunov function (MLF), the dwell
time and average dwell time properties of relatively slowly
switched systems have been investigated in the correspond-
ing switched systems [10]–[16]. However, in a number of
practical switched systems, the switching sequence is not
known a prior and these properties have to be examined
under arbitrary switching.
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Reachable set estimation aims to derive a closed bounded
set that contains all the state trajectories generated by a
dynamic system with a prescribed class of initial state set
and inputs. Reachable set estimation is not only of theoretical
interest in robust control theory [17], but also closely related
to practical engineering for the safety verification problems
[18]. For example, a dynamic system is regarded to be safe
if its reachable set does not intersect with the unsafe or
undesirable sets of states. In some early work, reachable set
bounding was considered in the context of state estimation
and it has later received a lot of attention in parameter
estimation, see [19] and references therein. Recently, em-
ploying ellipsoidal techniques based on Lyapunov function
approaches to estimate the reachable sets for different class
of systems attracts many researchers’ attention. In the frame-
work of bounding ellipsoid, the quadratic Lyapunov function
has played a fundamental role in the reachable set estimation
problem, and it has been further extended and developed to
time-delay systems [20]–[22], singular systems [23].

For the reachable set estimation problem for discrete-time
switched system under arbitrary switching, [24] proposes a
method based on switched Lyapunov function approach, and
the trajectories are estimated by a set of bounding ellipsoids.
The main aim in this paper is to further develop the Lyapunov
function approach and reduce its conservativeness in reach-
able set estimation for discrete-time switched system under
arbitrary switching. By introducing the conception of M -step
sequence which is able to characterize all possible subsystem
activation orders during M steps, an improved method will
be proposed in this paper. It should be stressed that the
approach in [24] can be recovered by particularly letting
M = 1 and thus has less conservativeness. Additionally,
also in virtue of the advantages of M -step sequence, the less
conservativeness emerges in stability analysis for discrete-
time switched system in comparison with the well-known
switched Lyapuonv function. Finally, several numerical ex-
amples are given in order to emphasize the less conserva-
tiveness and effectiveness of the approach.

The remainder of this paper is organized as follows:
Preliminaries and problem formulation are given in Section
II. The main results including the M -step sequence, reach-
able set estimation and discussion on stability are given in
Section III. Numerical examples are provided in Section IV.
Conclusions are given in Section V.

Notation: N represents the set of natural numbers. R and
R≥0 denote the fields of real numbers and nonnegative real
numbers, respectively. Rn is the vector space of all n-tuples
of real numbers, Rn×n is the space of n× n matrices with



real entries. The notation P ≻ 0 (P ≺ 0) means P is
real symmetric and positive definite (negative definite). A⊤

denotes the transpose of A. In symmetric block matrices,
we use * as an ellipsis for the terms that are introduced
by symmetry. diag{· · · } denotes a block-diagonal matrix.
|·| stands for the Euclidean norm. The bounding ellipsoid
is expressed by E(R) , {x ∈ Rn | x⊤Rx ≤ 1, 0 ≺ R ∈
Rn×n}, and ball B(x0, δ) , {x ∈ Rn | |x− x0| ≤ δ, x0 ∈
Rn, δ > 0}.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, we consider a class of discrete-time switched
linear system in the following form

x(k + 1) = Aσ(k)x(k) +Bσ(k)ω(k) (1)

where x(k), x0 ∈ Rnx are the state of the system and
initial state, respectively. The switching signal σ is defined
as σ : N → I[1, N ], where N is the number of subsystems
involved in the switched system. In this paper, no specific
restriction is imposed on switching signal σ, namely the
arbitrary switching law is considered in the rest of paper.
Ai, and Bi, i ∈ I[1, N ] are constant system matrices
with appropriate dimensions. ω(k) ∈ Rnω is the bounded
peak input vector which is assumed to satisfy the following
constraint

ω(k) ∈ W , {ω ∈ Rnω | ω⊤ω ≤ d2, d > 0} (2)

The main problem considered in this paper is the reachable
set estimation problem for switched system (1) with input
ω(k) satisfying (2). The reachable set is defined as

Rx , {x ∈ Rnx | x0 = 0, x(k), ω(k) satisfy (1), (2)} (3)

Due to the complex characteristic of switched systems,
the accurate reachable set for switched system (1) is hard to
compute. The reachable set estimation problem is formulated
as follows.

Problem 1: For switched system (1), determine an over
approximate set R̃x such that Rx ⊆ R̃x, and the set R̃x

should be optimized as small as possible.
The recent solution to compute an over approximate

set R̃x is proposed in [24], which is based on switched
Lyapunov function approach [25].

Lemma 1: [24] Consider system (1) with input (2). If
there exist a set of a family of functions Vi : Rn → R+

satisfying Vi(0) = 0 and Vi(x) > 0, ∀x = 0, i ∈ I[1, N ],
and exist scalars 0 < αi,j < 1 such that ∀(i, j) ∈ I[1, N ]×
I[1, N ],

Vj(x(k + 1))− αi,jVi(x(k))−
1− αi,j

d2
ω⊤(k)ω(k) ≤ 0

(4)

then system (1) is globally uniformly asymptotically stable
and we have ∃i ∈ I[1, N ] such that Vi(x(k)) ≤ 1 for all
x(0) satisfying Vi(x(0)) ≤ 1, ∀i ∈ I[1, N ].

In the framework of quadratic switched Lyapunov func-
tion, the following result for reachable set estimation stems
from above Lemma.

Lemma 2: [24] Consider system (1) with input (2). If
there exist matrices Pi ≻ 0, i ∈ I[1, N ] and scalars 0 <
αi,j < 1 such that ∀(i, j) ∈ I[1, N ]× I[1, N ],[

A⊤
i PjAi − αi,jPi A⊤

i PjBi

∗ B⊤
i PjBi − 1−αi,j

d2 I

]
≼ 0 (5)

then system (1) is GUAS and the reachable set Rx can be
over approximated by R̃x ,

∪
i∈I[1,N ] E(Pi).

Remark 1: In [24], Lemma 1 has Vi(x(k)) ≤ 1, ∀i ∈
I[1, N ], and the reachable set Rx in Lemma 2 is bounded
by the intersection of a set of ellipsoids

∩
i∈I[1,N ] E(Pi).

We correct this slight error as that ∃i ∈ I[1, N ] such that
Vi(x(k)) ≤ 1 and the over approximate set R̃x should be
the union of a set of ellipsoids

∪
i∈I[1,N ] E(Pi), since σ(k)

is an arbitrary switching means σ(k) could be any possible
i ∈ I[1, N ] and R̃x needs to include all possible trajectories
for any i ∈ I[1, N ].

On the basis of above lemma, the over approximate
reachable set R̃x can be characterized by a set of ellipsoids,
and optimization problems can be formulated to obtain R̃x

as small as possible in [24]. In this paper, our main aim is
to further improve this Lyapunov function based approach to
develop less conservative result for reachable set estimation
of switched system (1), namely to develop an approach to
better over approximate the reachable set Rx.

III. MAIN RESULTS

In this section, the reachable set estimation problem will
be studied based on a novel conception named M -step se-
quence, an LMI based approach will be proposed to obtain a
set of bounding ellipsoids. Moreover, the globally uniformly
asymptotical stability of discrete-time switched linear system
is discussed in the framework of M -step sequence.

A. M-Step Sequence

In this paper, the main aim is to further reduce the
conservatism in Lyapunov function based approach for reach-
able set estimation of discrete-time switched system over
switched Lyapunov function methods. First, we introduce
the conception of the M -step sequence, which plays a
fundamental role in this paper. The M -step sequence is
defined as follows.

Definition 1: For a switched system consisting N subsys-
tem, and given a time window with M -step length, an M -
step sequence is a combination of subsystems in M steps.
There are NM combinations of subsystems in M steps, and
these NM combinations are indexed by I[1, NM ]. For the
ith sequence of combination in I[1, NM ], it is expressed by

SM
i , {i1, i2, . . . , iM}, i1, . . . , iM ∈ I[1, N ], i ∈ I[1, NM ]
The M -step sequence is able to characterize all possible

activation orders for switched system during the M steps.
Given a switching signal σ(k) in [0,∞), we denote the nth
M -step activation sequence is

Σn , {σ(nM), σ(nM + 1), . . . , σ((n+ 1)M − 1)} (6)

where n = 0, 1, . . ..



The following properties can be easily observed.
Proposition 1: Given any switching signal σ(k) defined

over interval [0,∞), we have
1)

∪∞
n=0 Σn = {σ(0), σ(1), σ(2), . . .}.

2) For any n = 0, 1, . . ., there exists an i ∈ I[1, NM ]
such that Σn = SM

i .
Remark 2: The first property implies the activation order

of any switching signal σ(k) can be expressed by M -step
activation sequence Σn as n → ∞. The second property
means any M -step activation sequence Σn can be found in
SM
i , i ∈ I[1, NM ]. These two properties suffice to show

that the M -step sequence SM
i , i ∈ I[1, NM ], is capable to

describe the behaviors of switching signal σ(k) in [0,∞).
Based on the introduced notion of M -step sequence,

we introduce a class of M -step clock-dependent switched
Lyapunov functions Vi : [nM + 1, (n+ 1)M ]× Rn → R+,
n = 0, 1, . . ., i ∈ I[1, NM ], associated to M -step sequence,
which are a family of non-negative functions satisfying

β1(|x|) < Vi(k, x) < β2(|x|) (7)

where β1, β2 ∈ K∞.
In the framework of the M -step clock-dependent switched

Lyapunov function, the following result can be obtained as
an improvement of Lemma 1.

Theorem 1: Consider system (1) with input (2). If there
exist a set of a family of non-negative functions Vi : [nM +
1, (n + 1)M ] × Rn → R+, n = 0, 1, . . ., i ∈ I[1, NM ]
satisfying (7), and exist scalars 0 < αi, αi,j < 1 such that
∀(i, j) ∈ I[1, NM ]× I[1, NM ],

Ωi(k) ≤ 0, ∀k = nM + 1, . . . , (n+ 1)M (8)
Θi,j ≤ 0 (9)

where Ωi(k) = Vi(k + 1, x(k + 1)) − αiVi(k, x(k)) −
1−αi

d2 ω⊤(k)ω(k), Θi,j = Vj(nM + 1, x(nM + 1)) −
αi,jVi(nM, x(nM))− 1−αi,j

d2 ω⊤(nM)ω(nM), n = 1, 2, . . ..
Then system (1) is uniformly stable and we have ∃i ∈
I[1, NM ] such that Vi(x(k)) ≤ 1 for all x0 satisfying
Vi(0, x0) ≤ 1, ∀i ∈ I[1, NM ].

Proof: First, we consider ω(k) = 0 for stability. By (8),
it ensures that

Vi(k + 1, x(k + 1))− αiVi(k, x(k)) ≤ 0 (10)

holds for k = nM + 1, nM + 1, . . . , (n+ 1)M .
Then, by (9), one has

Vj(nM + 1, x(nM + 1))− αi,jVi(nM, x(nM)) ≤ 0 (11)

Define a new function σ̃ : N → I[1, NM ] indicating the
active M -step sequence, and choose a Lyapunov function
candidate as Vσ̃(k)(k, x(k)). According to Proposition 1, and
together with (10) and (11) with the fact 0 < αi, αi,j < 1,
it leads to

Vσ̃(k+1)(k + 1, x(k + 1))− Vσ̃(k)(k, x(k)) < 0 (12)

Combined with (7), the stability can be established by
standard Lyapunov theorem.

Furthermore, in presence of input ω(k), (8) yields that

Vi(k + 1, x(k + 1))− αiVi(k, x(k)) ≤
1− αi

d2
ω⊤(k)ω(k)

≤ 1− αi

(13)
which implies Vi(k+1, x(k+1))−1 ≤ αi(Vi(k, x(k))−1).

Similarly, (9) can lead to

Vj(nM + 1, x(nM + 1))− αi,jVi(nM, x(nM)) ≤ 1− αi

(14)
holds for n = 1, 2, . . ., which implies

Vj(nM + 1, x(nM + 1))− 1 ≤ αi,j(Vi(nM, x(nM))− 1)
(15)

For any k ∈ N, we have

Vσ̃(k)(k)− 1

≤ασ̃(k−1)(Vσ̃(k−1)(k − 1)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM+1)(Vσ̃(nM)(nM + 1)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM+1)ασ̃(nM+1),σ̃(nM)(Vσ̃(nM)(nM)− 1)

≤ασ̃(k−1) · · ·ασ̃(nM)ασ̃(nM),σ̃(nM−1) · · ·ασ̃(0)(Vσ̃(0)(0)− 1)

Due to 0 < αi, αi,j < 1 and Vi(0, x0) ≤ 1, ∀i ∈
I[1, NM ], it ensures Vσ̃(k)(k) − 1 ≤ 0, ∀k ∈ N. Because
σ̃(k) is an arbitrary signal selecting value in I[1, NM ], it
implies ∃i ∈ I[1, NM ] ⇒ Vi(k, x) ≤ 1.

Remark 3: If we particularly let M = 1, Condition (8) is
reduced to

Vi(n+1, x(n+1))−αiVi(n, x(n))−
1− αi

d2
ω⊤(n)ω(n) ≤ 0

(16)
and (9) can be rewritten to

Vj(n+1, x(n+1))−αi,jVi(n, x(n))−
1− αi,j

d2
ω⊤(n)ω(n) ≤ 0

(17)
It is noted that (16) can be absorbed in (17) by just letting
αi,i = αi. It can be seen that (17) is exactly the condition (4)
in Lemma 1. Therefore, Theorem 1 covers previous result
stated by Lemma 1, namely Lemma 1 is a particular case
which can be recovered by Theorem 1 with M = 1.

B. Reachable Set Estimation

In this subsection, the reachable set estimation for discrete-
time switched linear system will be investigated. Based on
Theorem 1, the following result can be obtained.

Theorem 2: Consider system (1) with input (2). If there
exist matrices Pi,m ≻ 0, m ∈ I[1,M ], i ∈ I[1, NM ] and
scalars 0 < αi < 1, 0 < αi,j < 1 such that ∀(i, j) ∈
I[1, NM ]× I[1, NM ],[

A⊤
im
Pi,m+1Aim − αiPi,m A⊤

im
Pi,mBim

∗ B⊤
im
Pi,mBim − 1−αi

d2 I

]
≼ 0

m = 1, 2, . . . ,M − 1
(18)[

A⊤
iM

Pj,1AiM − αi,jPi,M A⊤
iM

Pj,1BiM

∗ B⊤
iM

Pj,1BiM − 1−αi,j

d2 I

]
≼ 0

(19)



then system (1) is uniformly stable and the reachable set Rx

can be over approximated by

R̃x ,
∪

m∈I[1,M ],i∈I[1,NM ]

E(Pi,m) (20)

Proof: Choosing an M -step clock-dependent switched
Lyapunov function in the following quadratic form

Vσ̃(k)(k, x(k)) = x⊤(k)Pσ̃(k),k−nM+1x(k), n = 0, 1, . . .
(21)

where σ̃(k) indicating the active M -step sequence defined
same as in (12).

Suppose σ̃(k) = i, k ∈ [nM + 1, (n + 1)M ] and
denote Ωi(k) = Vi(k + 1, x(k + 1)) − αiVi(k, x(k)) −
1−αi

d2 ω⊤(k)ω(k), and thus the M -step sequence SM
i =

{i1, i2, . . . , iM}. Along the system evolution, we can obtain

Ωi(k) = ξ⊤(k)Ξi,mξ(k)

where m ∈ I[1,M ], ξ(k) = [x⊤(k), ω⊤(k)]⊤ and Ξi,m =[
A⊤

im
Pi,m+1Aim − αiPi,m A⊤

im
PimBim

∗ B⊤
im
Pi,mBim − 1−αi

d2 I

]
.

Moreover, assume σ̃(nM) = i and σ̃(nM + 1) = j, and
let Θi,j = Vj(nM+1, x(nM+1))−αi,jVi(nM, x(nM))−
1−αi,j

d2 ω⊤(nM)ω(nM), the following derivation can be ob-
tained for the transition from instant nM to nM + 1.

Θi,j = ξ⊤(nM)Πi,jξ(nM)

where

Πi,j =

[
A⊤

iM
Pj,1AiM − αi,jPiM A⊤

iM
Pj,1BiM

∗ B⊤
iM

Pj,1BiM − 1−αi,j

d2
I

]
By (18) and (19), it can be ensured that Ωi(k) ≤ 0, ∀k =

nM + 1, . . . , (n+ 1)M , ∀n = 1, 2, . . . and Θi,j ≤ 0.
According to Theorem 1, for the case of x0 = 0, we

have ∃i ∈ I[1, NM ] such that Vi(x(k)) ≤ 1. Therefore,
the state x(k) satisfies x ∈ {x | x⊤Pi,mx ≤ 1,m ∈
I[1,M ], i ∈ I[1, NM ]} =

∪
m∈I[1,M ],i∈I[1,NM ] E(Pi,m),

which is exactly the set (20). The proof is complete.
Remark 4: Theorem 2 can be viewed as an improved

version for Lemma 2, if we enforce M = 1 in Theorem 2,
Pi,m, m ∈ I[1,M ], i ∈ I[1, NM ], becomes Pi, i ∈ I[1, N ].
Inequalities (18) and (19) can be rewritten to[

A⊤
i PjAi − αi,jPi A⊤

i PjBi

∗ B⊤
i PjBi − 1−αi,j

d2 I

]
≼ 0

which is (5) in Lemma 2.
Remark 5: The set R̃x is usually expected to be as small

as possible to achieve a precise estimate of reachable set Ry .
In [24], several methods have been proposed to minimize
the bounding ellipsoids, which can be also employed in our
paper. In order to make a clear comparison with [24], we
consider the method associated to the following constraint

Pi,m ≽ ϵI, ϵ > 0, ∀m ∈ I[1,M ], ∀i ∈ I[1, NM ] (22)

which implies that ϵx⊤(k)x(k) ≤ x⊤(t)Pi,mx(k) ≤ 1,
namely x(t) ∈ R̃x ,

∪
m∈I[1,M ],i∈I[1,NM ] E(Pi,m) ⊆

TABLE I
COMPUTATIONAL COMPLEXITY OF THEOREM 2

Number of variables Size of LMIs

Theorem 2 n(n+1)MNM

2
n(N2M +MNM )

B(0, 1/
√
ϵ), ∀k ∈ R≥0, so we have to maximize ϵ to obtain

a smallest ball B(0, 1/
√
ϵ) as

max ϵ

s.t. (18), (19) and (22)
(23)

Moreover, due to the existence of tuning parameters αi and
αi,j , the result in Theorem 2 and corresponding optimization
problem (23) are not standard LMI problems, they are
bilinear matrix inequality (BMI) problems and known to
be NP-hard. Fortunately, several algorithms are available
to solve BMI problems such as the iterative linear matrix
inequality (ILMI) approach in [26], [27], or using numerical
optimization algorithms, such as program fminsearch
[20] or genetic algorithm (GA) [24] in the optimization
toolbox of Matlab.

Remark 6: Although M > 1 will reduce the conservative-
ness, the price to pay is the increase of computational com-
plexity. The number of LMIs and involved decision variables
grows as M is increased. The computation complexities are
listed in Table I.

C. Some Discussions for Stability Analysis

It should be noted that the stability analysis result of
switched system (1) with input ω(k) = 0 is actually
included in the previous reachable set estimation solution.
As what has been shown in previous section, our reachable
set estimation yields less conservativeness than that in [24]
which is essentially based on switched Lyapunov function
approach in [25] . In fact, by introducing the concept of M -
step sequence, a less conservative stability analysis result can
be obtained as well in contrast to the well known stability
criterion proposed in [25] on basis of switched Lyapunov
function approach.

The following corollary can be viewed as an improvement
for the classical switched Lyapunov function approach in
stability analysis.

Corollary 1: Consider switched system (1) with ω(k) =
0, if there exist MNM symmetric matrices Pi,m ≻ 0, m ∈
I[0,M ], i ∈ I[1, NM ] such that the following inequalities
hold for ∀i, j ∈ I[1, NM ], ∀m ∈ I[1,M ],

A⊤
im+1

Pi,m+1Aim − Pi,m ≺ 0, m = 1, 2, . . . ,M − 1 (24)

A⊤
iMPj,1AiM − Pi,M ≺ 0 (25)

then switched system (1) is globally uniformly asymptotical-
ly stable.

Proof: The proof can be obtained by the guidelines in
Theorems 1 and 2, which is omitted here.

Remark 7: Corollary 1 can be viewed as an improved re-
sult over switched Lyapunov function approach for switched



system (1). By letting M = 1, conditions (24) and (25) can
be rewritten to

A⊤
i PjAi − Pi ≺ 0, i, j ∈ I[1, N ] (26)

where Pi ≻ 0, i ∈ I[1, N ]. This result is exactly the
Theorem 2 in [25], which means that the switched Lyapunov
function approach is a special case of Corollary 1 as M = 1.
Corollary 1 with M ≥ 2 is able to yield less conservativeness
in stability analysis, which can be shown by a numerical
example later.

IV. EXAMPLE

Example 1: Consider a switched system with two modes
with the following system matrices

A1 =

[
0 0.7

−0.2 −0.6

]
, B1 =

[
0.2
−0.4

]
A2 =

[
−0.6 0.4
−0.7 0.2

]
, B2 =

[
−0.6
0.4

]
The disturbance ω(k) satisfies ω(k) ∈ W , {ω ∈ Rnω |

ω⊤ω ≤ 1}. In order to compare our approach with that
in [24], we first use Lemma 2 to obtain the reachable set
estimation by maximizing ϵ in optimization (23). The GA is
used to search for optimized αi, i ∈ I[1, 2]. The population is
set to be 50. After 100 generations, the optimal ϵ = 0.04057,
which is shown in Fig. 1.

On the other hand, with same population and generation,
Theorem 2 with M = 2 reaches a larger ϵ as ϵ = 0.05618,
which obviously is a less conservative result. The update of ϵ
at each generation is illustrated in Fig. 1, which has a slower
convergent rate but a better optimized result. The slower
convergent rate is basically because more variables αi,j ,
i, j ∈ I[1, 4], are introduced in the optimization problem.
The union of bounding ellipsoids are depicted in Fig. 2 by
solid blue lines. For the purpose of showing the advantage of
our approach, we present Fig. 3 to clearly compare Theorem
2 and Lemma 2, in which the estimation by Theorem 2 is
more precise than by Lemma 2. In Figs. 2 and 3, the state
trajectories are generated with arbitrary switching signal and
disturbance ω(k) uniformly distributed over [−1, 1].

Example 2: In this example, we will show the less conser-
vativeness of M -step method in the stability point of view.
Let us consider the system (1) with matrices Ai = eBiT ,
where

B1 =

[
0 1

−10 −1

]
, B2 =

[
0 1

−0.1 −4

]
(27)

Letting T = 0.1, and using switched Lyapunov function
approach in [25] (also viewed as M = 1 in our M -step
sequence approach), it can be found that the LMI problem
is not feasible, so that the globally uniformly asymptotically
stability cannot be determined by the approach in [25].
Moreover, by applying the method in [28], the minimum
admissible dwell time is computed as 2, which also in-
dicates that the globally uniformly asymptotically stability
of switched system (1) cannot be ascertained for the case
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Fig. 1. Fitness function value along with generations.
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Fig. 4. State response under switching occurring at each time instant.

of arbitrary switching, for which the minimum dwell time
should be 1.

However, if we increase M by just letting M = 2
in the M -step sequence method proposed in this paper,
the feasibility of the corresponding LMI problems can be
established, which is sufficient to guarantee that the system
is globally uniformly asymptotically stable under arbitrary
switching. The convergent state evolution is shown by the
following simulation result in Fig. 4, where the extreme
switching behavior, i.e., the switching occurs at each time
instant, is adopted, and the initial state is assumed to be
x0 = [3 5]⊤.

V. CONCLUSIONS

The reachable set estimation problem for discrete-time
switched system has been investigated in this paper. A
novel conception called M -step sequence is introduced to
solve the reachable set estimation problem, it is shown that
the proposed approach covers the previous result which is
based on switched Lyapunov function, and thus has less
conservativeness. In addition, some discussions are given for
stability analysis for discrete-time switched system in the
framework of M -step sequence. Finally, numerical examples
are given to show the theoretical findings in this paper.
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