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Abstract

The event-triggered control problem for switched linear system is addressed in this paper. The

periodical sampling scheme and event-triggering condition are incorporated in the closed-loop. The

feedback control updates its value only at sampling instants as long as event-triggering condition

is satisfied as well. In addition, the switchings are only allowed to occur at sampling instants and

meanwhile the switching condition is satisfied. Three equivalent sufficient conditions are proposed

to ensure the asymptotic stability of switched systems. In particular, one condition has a promising

feature of affineness in system matrices, and as a consequence, it is extended to robust sampling

case and L2-gain analysis. Several examples are provided to illustrate our results.

Keywords: Asymptotic stability, event-triggered control, L2 gain, switched systems

1 Introduction

Switched systems have emerged as an important subclass of hybrid systems and represent a very active

area of current research in the field of control systems [1–3]. A switched system is composed of a family

of continuous or discrete-time subsystems, described by differential or difference equations, respectively,

along with a switching rule governing the switching amongst the subsystems. The motivation for

studying switched systems comes from the fact that switched system can be effectively used to model

many practical systems that are inherently multi-model in the sense that several dynamic subsystem

models are required to describe their behavior. For instance, the sampled data systems [4], networked

control systems [5] and event-triggered systems [6] can be modeled as switched systems. Generally, the

stability and stabilization problems are the main concerns in the field of switched systems. It has been

proved that Lyapunov function techniques are effective to deal with stability and stabilization problems

for switched systems, for example [7–9]. Combining multiple Lyapunov function (MLF), the dwell time

and average dwell time properties of relatively slowly switched systems have been investigated in the

corresponding switched systems [10–12]. For more details on the recent advances in the area, the

readers are referred to the surveys [2], and the references cited therein.

On the other hand, the periodic and aperiodic control strategies are presented as the most prevailing

control approaches on digital platforms. Typically, the control executes periodically in the closed-loop

and the system can be analyzed by the well-developed sampled-data system theory. As a further
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improvement of traditional sampled-data system, the event-triggered control system is introduced, see

for example the theory work [13–16], and numerous applications [17–20]. In the framework of event-

triggered control, the control executions are generated by well-designed event-triggering condition. In

comparison with sampled-data scheme, the event-triggered control which is a typical aperiodic one is

capable of significantly reducing the number of control task executions, while retaining a satisfactory

closed-loop performance. Though the event-triggered control can offers some clear advantages with

respect to periodic control such as in handling energy, computation, and communication constraints

but it also introduces some new theoretical and practical problems. The detailed advantages and

challenges introduced by the event-triggered control can be found in the survey paper [21].

In this paper, we consider a class of periodic event-triggered control for switched linear systems.

The periodic event-triggering condition allows the coexistence of periodic sampling scheme and event-

triggering condition for the control executions. Moreover, this blending strategy also determines the

occurrence of switching behaviors, in other words, the switching only occurs at sampling instants as

long as the switching condition is satisfied. Three stability criteria are proposed for event-triggered

switched system in this paper, and they are proved to be basically equivalent. The first one is derived

by analyzing the evolution of state at sampling instant, however, it is not convenient to extend to

further problems such as robust sampling and L2-gain analysis. Then, a sampling-dependent approach

is proposed, which actually is not numerically tractable since it has infinitely many values to check.

Thus, a discretized method to equivalently convert the sampling-dependent condition into a numerically

tractable condition. Based on this numerically tractable condition, the extensions to robust sampling

case and L2-gain analysis are made.

The remainder of this paper is organized as follows: The event-triggered switched system model

is given in Section 2. The main result, three equivalent stability criteria are presented in Section

3. Extensions to robust sampling case and L2-gain analysis are studied in Section 4 and Section 5,

respectively. Conclusions are given Section 6.

Notations: N represents the set of natural numbers, R denotes the field of real numbers, R+ is the

set of nonnegative real numbers, and Rn stands for the vector space of all n-tuples of real numbers,

Rn×n is the space of n × n matrices with real entries. The set Mn
c consists of all matrices Φ ∈ Rn×n

with nonnegative off diagonal elements ϕji ≥ 0, i ̸= j, satisfying
∑N

j=1 ϕji = 0, which implies that

ϕii ≤ 0. The set Mn
d consists of all matrices Π ∈ Rn×n with nonnegative elements πji ≥ 0 satisfying

the normalization constraints
∑N

j=1 πji = 1. ∥·∥ stands for Euclidean norm. The notation A ≻ 0

means A is real symmetric and positive definite. A ≻ B means that A − B ≻ 0. A⊤ denotes the

transpose of A. In addition, in symmetric block matrices, we use * as an ellipsis for the terms that are

induced by symmetry and diag{· · · } stands for a block-diagonal matrix. I denotes the unit matrix and

0 stands for the zero elements in matrix with appropriate dimensions. We define x(t+k ) = limt→t+k
x(t)

and x(t−k ) = limt→t−k
x(t). For a matrix function F : [a, b] → Rn×n, its upper right Dini derivative is

defined by D+F (x) , limh→0+ sup F (x+h)−F (x)
h . In the rest of this work, we will make extensive uses

of the following matrix expressions:

C (A,P ) = A⊤P⊤ + PA

D(A,P (t)) = C (A,P (t)) +D+P (t)

D1(A,P,Q, δ) = C (A,P ) + (P −Q)/δ

D2(A,P,Q, δ) = C (A,Q) + (P −Q)/δ

E (A, J, P,Q, t) = eA
⊤tJ⊤PJeAt −Q
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2 Event-Triggered Switched Control System

Consider the continuous-time switched linear system in the following form:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Eσ(t)ω(t) (1)

y(t) = Cσ(t)x(t) +Dσ(t)ω(t) (2)

where x(t), x0 ∈ Rn are the state of the system and the initial condition, respectively. u(t) ∈ Rnu is

the input and ω(t) ∈ Rnω is the exogenous disturbance. y(t) ∈ Rny is the controlled output. The

switching function σ : R+ → N , {1, 2, . . . , N} defines the switching actions, where N is the number

of subsystems.

In this paper, we consider a periodic event-triggered control strategy for switched system (1)–(2) for

the sake of taking advantages of both periodic sampled-data and event-triggered control, which means

the system state x(t) is only measured at the periodic sampling times for generating the control input,

computing the switching function output and verifying the event-triggering condition. In a periodic

sampling implementation, the values of the system state are available for a time sequence S , {tk}k∈N,

where t0 is the initial time and tk, k ∈ N \ {0}, are the sampling times, which are periodic in the sense

that tk = kTs, k ∈ N, for some properly chosen sampling interval Ts > 0. With this sampling setting,

the sampled switching signal is

σ(t) = σ̂(t), t ∈ (tk, tk+1] (3)

where σ̂(t), t ∈ (tk, tk+1], is determined by

σ̂(t) =

{
σ(tk) σ(tk) ̸= σ̂(tk)

σ̂(tk) σ(tk) = σ̂(tk)
(4)

The sampled switching signal (3)–(4) implies the switching decisions are only made at sampling

instant tk. The value of σ(t) only changes at sampling instant tk if σ(tk) ̸= σ̂(tk), otherwise it holds

its most recent value. It worth mentioning that since the switching function (3) only activates at each

sampling time tk, k ∈ N, it can be interpreted that a dwell time constraint tk+1 − tk ≥ Ts, ∀k ∈ N is

imposed on the switching signal. This dwell time constraint obviously prevents the switching actions

from chattering phenomenon or Zeno phenomenon, since the switching frequency is restricted to have

an upper bound equals to 1/Ts. In [22], a modified min-switching law with dwell time constraint

is proposed to avoid the chattering behavior owe to the dwell time constraint. However, it requires

accessing the system state and monitoring the state-dependent switching rule continuously, which is

not allowed in the sampled-data setting proposed in this paper, since the system state x(t) is obtained

only at sampling instants.

In addition, we also take the sampled-data feedback controller into account. In a conventional

periodic sampled-data control scheme, the following mode-dependent state feedback controller is often

considered

u(t) = Kσ(t)x̂(t), t ∈ R+ (5)

where Ki, i ∈ N are the already designed feedback gains for subsystems, and x̂(t), t ∈ (tk, tk+1], is

defined by

x̂(t) = x(tk), t ∈ (tk, tk+1] (6)
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Figure 1: General scheme of periodic event-triggered switched control system

In order to obtain a complete model of system (1)–(2) with the periodic sampling setting (3) and

(5), we let x̃(t) = [x(t) x̂(t)]⊤ and obtain the following system

˙̃x(t) = Ãσ(t)x̃(t) + Eσ(t)ω(t), t ∈ R+ \ S (7)

x̃(t+k ) = Jx̃(t−k ), tk ∈ S (8)

y(t) = C̃σ(t)x̃(t) + D̃σ(t)ω(t) (9)

where σ(t) evolves according to (3) and

Ãi =

[
Ai BiKi

0 0

]
, Ẽi =

[
Ei

0

]
, J =

[
I 0

I 0

]
, C̃i =

[
Ci 0

]
, D̃i = Di

Further considering the event-triggered controller, the state measurements are transmitted over a

communication network and the control values are updated only when certain event-triggering condi-

tions are satisfied, the controller is given in the following form

u(t) = Kσ(t)x̂(t), t ∈ R+ (10)

where x̂(t) is a left-continuous signal, given for t ∈ (tk, tk+1], k ∈ N, and modifies the (6) as

x̂(t) =

{
x(tk), Γ(x(tk), x̂(tk)) > 0

x̂(tk), Γ(x(tk), x̂(tk)) ≤ 0
(11)

with an event-triggering function Γ : R2n → R. The value x̂(tk) stands for the valid value for the

controller at sampling time tk and through the successive interval [tk, tk+1), which is determined by

the event-triggering function Γ. If Γ(x(tk), x̂(tk)) ≤ 0, the state x̂(tk) holds as its most recent value,

and in the case of Γ(x(tk), x̂(tk)) > 0, the state x(tk) is transmitted over the network to the controller

and x̂(tk) is updated accordingly. The general scheme of event-triggered switched control system with

periodic sampling setting is illustrated in Figure 1.

In this paper, we focus on a class of quadratic event-triggering condition, that is, Γ(x(tk), x̂(tk)) is

in the following quadratic form

Γ(x̃(tk)) = x̃⊤(tk)Qx̃(tk) (12)
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where x̃(tk) = [x⊤(tk) x̂⊤(tk)]
⊤ and Q ∈ R2n×2n is a symmetric matrix. Several event-triggering

conditions can be written into the quadratic structure (12), for example the state-error based triggering

condition Γ(x(tk), x̂(tk)) = ∥x̂(tk)− x(tk)∥ −∆ ∥x(tk)∥, where ∆ > 0, can be expressed by (12) with

Q =

[
(1−∆2)I −I

−I I

]
Other well-known event triggering conditions such as input-error based, Lyapunov function based

conditions can be formalized by (12) as well, readers can refer to [6].

In summary, by modifying the periodic sampled-data system model (7)–(9), the event-triggered

system model arrives at

˙̃x(t) = Ãσ(t)x̃(t) + Ẽσ(t)ω(t), t ∈ R+ \ S (13)

x̃(t+k ) =

{
J1x̃(t

−
k ), x̃⊤(t−k )Qx̃(t−k ) > 0

J2x̃(t
−
k ), x̃⊤(t−k )Qx̃(t−k ) ≤ 0

, tk ∈ S (14)

y(t) = C̃σ(t)x̃(t) + D̃σ(t)ω(t) (15)

where J1 is same as J in (8) and J2 = diag{I, I}.
By (13)–(15), one can see that the event-triggered switched control system can be expressed as

a switched system with impulsive behaviors at switching instants. For the passive switching, that is

the switching information is not available and the switching is supposed to possibly occur at every

switching sampling instant, system (13)–(15) can be viewed to be under switching with a dwell time

Ts. The results in [11, 23–25] for switched system with dwell time can be employed. However, if some

active switching is considered, which means the switching rule is explicitly available to designed, the

passive switching result could yields conservativeness, thus we should improve these results with the

aid of the information of switching law. For the active switching considered in the remainder of paper,

we adopt the well-known min-switching rule, which is described as below:

σ(t) = argmin
i∈N

x̃⊤(t)Pix̃(t) (16)

where Pi ≻ 0, i ∈ N , are matrices to be determined, see the results in [26, 27]. The corresponding

sampled min-switching rule (16) is described as

σ(t) =

{
argmini∈N x̃⊤(t+k )Pix̃(t

+
k ), tk ∈ S

σ(tk), t ∈ (tk, tk+1)
(17)

The main aim of this paper is to provide analysis and design techniques for controller, sampling

scheme, and event-triggering condition such that the system is stable with switching rule (17). In the

following, the definition of globally asymptotic stability is presented.

Definition 1 A function γ : R+ → R+ is a K function if it is strictly increasing and γ(0) = 0, and

also a function β : R+ × R+ → R+ is a KL function if for each fixed s the function β(r, s) is a K
function with respect to r, and for each fixed r the function β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s → 0.

The definition of globally uniformly asymptotic stability (GUAS) for system (13)–(15) is given

below.
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Definition 2 The equilibrium x = 0 of system (13)–(15) with ω(t) = 0 is GUAS under the switching

signal σ(t) if, for initial condition x̃(t0), there exists a class KL function β such that the solution of

the system satisfies ∥x̃(t)∥ ≤ β(∥x̃(t0)∥ , t), ∀t ∈ R+.

In the presence of input ω(t), the L2-gain performance of system (13)–(15) is formulated in the

following.

Definition 3 For γ > 0, system (13)–(15) is said to be GUAS with an L2-gain performance, if the

following is satisfied:

(1) System (13)–(15) is GUAS when ω(t) = 0;

(2) Under zero initial conditions, the following inequality holds for all nonzero ω ∈ L2[0,∞),∫ ∞

t0

∥y(t)∥2 dt ≤ γ2

∫ ∞

t0

∥ω(t)∥2 dt (18)

where γ is called the L2-gain.

Before ending this section, a useful lemma is introduced.

Lemma 1 For a matrix A ∈ Rn×n and a scalar Ts > 0, there always exist a sufficiently large M∗ ∈
N \ {0}, a sufficiently small ϵ ∈ R+ and matrices Pm ∈ Rn×n, m = {0, . . . ,M}, such that

Pm ≻ 0, m ∈ {0, . . . ,M} (19)

D1(A,Pm+1, Pm, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (20)

D2(A,Pm+1, Pm, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (21)

where δ = Ts/M , hold for any M > M∗, and Pm, m = {0, . . . ,M}, have the following form:

Pm = e−A⊤δmP0e
−Aδm −

∫ δm

0

e−A⊤(δm−t)Y (t)e−A(δm−t)(t)dt, m ∈ {0, . . . ,M} (22)

where δm = mTs/M , m = {0, . . . ,M}, and 0 ≺ Y (t) ≺ ϵI, t ∈ [0, Ts].

Proof . See Appendix. �

In this section, the closed-loop of event-triggered switched linear system is modeled as a switched

system with state update at switching instant, along with mixed time-dependent and state-dependent

switching rules. In the next section, the stability analysis will be studied as the main result in this

paper.

3 Stability Analysis for Event-Triggered Switched System

Motivated by the techniques used in [23, 24, 28–30] for switched systems, and [31] for time-delayed sys-

tems, the main result for the stability of event-triggered switched control system (13)–(15) is presented

by the following theorem.

Theorem 1 Consider event-triggered switched control system (13)–(15) with ω(t) = 0, the following

three statements are equivalent:
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(a) There exist scalars µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices Pi ≻ 0, i ∈ N ,

such that

Ξi,h ≺ 0, i ∈ N , h ∈ {1, 2} (23)

where Ξi,h = E (Ãi, Jh,
∑N

j=1 πjiPj , Pi + (−1)hµhQ̃i, Ts), Q̃i = eÃ
⊤
i TsQeÃiTs .

(b) There exist scalars µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and a continuous symmetric matrix

function Pi(t) : [0, Ts] → R2n×2n, i ∈ N , such that

Pi(t) ≻ 0, t ∈ [0, Ts], i ∈ N (24)

D(Ãi, Pi(t)) ≺ 0, i ∈ N (25)

Ωi,h ≺ 0, i ∈ N , h ∈ {1, 2} (26)

where Ωi,h = J⊤
h

∑N
j=1 πjiPj(0)Jh − Pi(Ts)− (−1)hµhQ.

(c) There exist scalars M ∈ N \ {0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices

Pi,m ∈ R2n×2n, m ∈ {0, . . . ,M}, i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (27)

D1(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (28)

D2(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (29)

Ωi,h ≺ 0, h ∈ {1, 2} (30)

where δ = Ts/M and Ωi,h = J⊤
h

∑N
j=1 πjiPj,0Jh − Pi,M − (−1)hµhQ.

when one of the above equivalent statements holds, then system (13)–(15) with ω(t) = 0 is GUAS with

switching signal (17) with Pi by statement (a), Pi = Pi(0) by statement (b) and Pi = Pi,0 by statement

(c), respectively.

Proof . The structure of the proof is as follows: First, we prove the equivalence by deriving (c) ⇒
(b) ⇒ (a) ⇒ (c), then establish GUAS by (a) ⇒ GUAS.

(c) ⇒ (b): Dividing interval I , [0, Ts] can into M ∈ N \ {0} segments described as Im ,
[δm, δm+1), m = 0, 1, . . . ,M − 1, which are of equal length δ = Ts/M , and then δ0 = 0 and δm =

mδ = mTs

M . Based on the discretization of I, the following time-scheduled matrices Pi(t), i ∈ N , are

introduced {
Pi(t) = (1− θ(t))Pi,m + θ(t)Pi,m+1

θ(t) = Mt/Ts −m
, t ∈ Im (31)

by which it can be seen that 0 ≤ θ(t) ≤ 1 and Pi(t) defines a piecewise linear matrix function over I.
By the definition of Pi(t), i ∈ N , as (31), we have Pi(0) = Pi,0 and Pi(Ts) = Pi,M , so (27) and (30)

can make sure that (24) and (26) hold.

Then, one has

D+Pi(t) = (Pi,m+1 − Pi,m)D+θ(t), t ∈ Im (32)

Due to θ(t) = M(t− δm)/Ts, we have D+θ(t) = M/Ts. Hence D+Pi(t) becomes

D+Pi(t) = M(Pi,m+1 − Pi,m)/Ts, t ∈ Im (33)

Thus, (28) and (29) imply (25) holds.
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(b) ⇒ (a): Pre- and post-multiplying (25) with eÃ
⊤
i t and its transpose, and integrate it over

[0, Ts], it arrives

eÃ
⊤
i TsPi(Ts)e

ÃiTs − Pi(0) ≺ 0, i ∈ N (34)

which implies Pi(0) ≻ eÃ
⊤
i TsPi(Ts)e

ÃiTs , i ∈ N . Furthermore, it equals to

Pi(Ts) ≺ e−Ã⊤
i TsPi(0)e

−ÃiTs , i ∈ N (35)

Using (35) into (26), the following inequality holds for i ∈ N and h ∈ {1, 2},

J⊤
h

∑N

j=1
πjiPj(0)Jh − e−Ã⊤

i TsPi(0)e
−ÃiTs − (−1)hµhQ ≺ 0 (36)

Letting Pi = Pi(0) ≻ 0, i ∈ N , (36) equals to

eÃ
⊤
i TsJ⊤

h

∑N

j=1
πjiPjJhe

ÃiTs − Pi − (−1)hµhQ̃i ≺ 0 (37)

where Q̃i = eÃ
⊤
i TsQeÃiTs . Thus, (23) can be established by letting Pi = Pi(0) ≻ 0, i ∈ N .

(a) ⇒ (c): Since (23) holds, it implies that the following inequality holds

J⊤
h

∑N

j=1
πjiPjJh − e−Ã⊤

i TsPie
−ÃiTs − (−1)hµhQ ≺ 0 (38)

which implies that there exists an ϵ∗ > 0 such that

J⊤
h

∑N

j=1
πjiPjJh − e−Ã⊤

i TsPie
−ÃiTs − (−1)hµhQ ≺ −ϵ∗I (39)

Then, for any ϵ > 0, we can let Pi,0 = ϵPi/ϵ
∗ ≻ 0, i ∈ N (This choice of Pi,0, i ∈ N , maintains the

same switching law generated by Pi, i ∈ N .), and µ̂h = ϵµh/ϵ
∗ > 0, h ∈ {1, 2}, such that

J⊤
h

∑N

j=1
πjiPj,0Jh − e−Ã⊤

i TsPi,0e
−ÃiTs − (−1)hµ̂hQ ≺ −ϵI (40)

Using Lemma 1, there always exists a sufficiently large M∗ such that (27), (28), (29) always hold with

Pi,m, m ∈ {0, . . . ,M}, M > M∗, i ∈ N , in the form of

Pi,m = e−Ã⊤
i δmPi,0e

−Ãiδm − Zi,m, m ∈ {0, . . . ,M} (41)

where

Zi,m =

∫ δm

0

e−Ã⊤
i (δm−t)Yi(t)e

−Ãi(δm−t)(t)dt

with δm = mTs/M , m = {0, . . . ,M}, and continuous matrix functions Yi(t) ≻ 0, i ∈ N .

Thus, it yields

Pi,M = e−Ã⊤
i TsPi,0e

−ÃiTs − Zi,M (42)

Substituting e−Ã⊤
i TsPi,0e

−ÃiTs = Pi,M + Zi,M into (40), we have

J⊤
h

∑N

j=1
πjiPj,0Jh − Pi,M − (−1)hµ̂hQ ≺ −ϵI + Zi,M (43)

Since ϵ > 0 can be arbitrarily chosen, we can choose a sufficiently large ϵ > 0 such that

J⊤
h

∑N

j=1
πjiPj,0Jh − Pi,M − (−1)hµ̂hQ ≺ 0 (44)
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which implies that (30) holds.

(a) ⇒ GUAS: First, we consider the system state x̃(t+k ) at sampling instants, we have

x̃(t+k+1) =

 J1e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), x̃⊤(t−k+1)Qx̃(t−k+1) > 0

J2e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), x̃⊤(t−k+1)Qx̃(t−k+1) ≤ 0
(45)

Due to x̃(t−k+1) = e
Ã

σ(t
+
k

)
Ts

x̃(t+k ), and letting Q̃i = eÃ
⊤
i TsQeÃiTs , k = t+k , x̃(k) evolves according to the

following dynamics

x̃(k + 1) =

{
J1e

Ãσ(k)Ts x̃(k), x̃⊤(k)Q̃ix̃(k) > 0

J2e
Ãσ(k)Ts x̃(k), x̃⊤(k)Q̃ix̃(k) ≤ 0

(46)

where σ(k) = argmini∈N x̃⊤(k)Pix̃(k) and Pi, i ∈ N , is same as in switching signal (17).

Construct Lyapunov function candidate as V (x̃(k)) = x̃⊤(k)Pσ(k)x̃(k) and define ∆V (x̃(k)) =

V (x̃(k + 1))− V (x̃(k)), under the min-switching law (17), we have

∆V (x̃(k)) = min
j∈N

x̃⊤(k + 1)Pj x̃(k + 1)− x̃⊤(k)Pix̃(k)

≤ x̃⊤(k + 1)

(∑N

j=1
πjiPj

)
x̃(k + 1)− x̃⊤(k)Pix̃(k)

By (46), ∆V (x̃(k)) arrives

∆V (x̃(k)) =

{
x̃⊤(k)Γi,1x̃(k), x̃⊤(k)Q̃ix̃(k) > 0

x̃⊤(k)Γi,2x̃(k), x̃⊤(k)Q̃ix̃(k) ≤ 0
(47)

where Γi,1 = E (Ãi, J1,
∑N

j=1 πjiPj,0, Pi, Ts), Γi,2 = E (Ãi, J2,
∑N

j=1 πjiPj,0, Pi, Ts). Since (23) holds, it

implies there exists a sufficiently small ϵ > 0 such that Ξi,h < −ϵI, ∀i ∈ N , h ∈ {1, 2} then using

S-Procedure, it ensures that

∆V (x̃(k)) < −ϵ ∥x̃(k)∥2 , k ∈ N (48)

Letting λmin, λmax be the minimal and maximal eigenvalues of Pi, i ∈ N , respectively, it implies that

λmin ∥x̃(k)∥2 ≤ V (x̃(k)) ≤ λmax ∥x̃(k)∥2. Thus, (48) implies that V (x̃(k)) < (1 − ϵ/λmax)
kV (x̃(t0)),

where 0 < 1− ϵ/λmax < 1. Due to k = tk/Ts, one has

V (x̃(t+k )) < e(tk−t0) ln
1−ϵ/λmax

Ts V (x̃(t0)), tk ∈ S (49)

Furthermore, it arrives ∥∥x̃(t+k )∥∥ <

√
λmax

λmin
e−ρ(tk−t0) ∥x̃(t0)∥ , tk ∈ S (50)

where ρ = − ln(1− ϵ/λmax)/2Ts > 0.

Then, let us consider any t ∈ (tk, tk+1), the dynamics of mode i yields x̃(t) = eÃi(t−tk)x̃(t+k ),

t ∈ (tk, tk+1). Using the following derivation∥∥∥eÃi(t−tk)
∥∥∥ ≤ e∥Ãi(t−tk)∥ ≤ e∥Ãi∥Ts , t ∈ (tk, tk+1) (51)

we have ∥x̃(t)∥ ≤ c ∥x̃(tk)∥, t ∈ (tk, tk+1), where c = maxi∈N e∥Ãi∥Ts . Thus, by (50), it can be ob-

tained that ∥x̃(t)∥ < Ce−ρ(t−t0) ∥x̃(t0)∥, where C = ceρTs
√
λmax/λmin > 0, and the GUAS can be

established by the existence of KL function β(∥x̃(t0)∥ , t) = Ce−ρ(t−t0) ∥x̃(t0)∥. �

Some observations are obtained for three conditions in Theorem 1:

9



1. If no event-triggering condition is considered and the state x(t) updates at each sampling instant,

event-triggered system (13)–(15) is reduced to (7)–(9), and as a result, (23) can be rewritten to

E (Ãi, J,
∑N

j=1
πjiPj , Pi, Ts) ≺ 0, i ∈ N (52)

It can be found that (52) recovers the result in [32], which deals with the switched system with

min-switching law (16) only acts at sampling instant tk. Theorem 1 generalizes the sampled

switching case to event-triggered switching case. Furthermore, if we consider the passive switch-

ing, which means switched system could switch to any subsystems at every switching instant tk.

That means, for any j ̸= i, i, j ∈ N , we have to let πji = 1 and πpi = 0, p ̸= j, so

E (Ãi, J, Pj , Pi, Ts) ≺ 0, i, j ∈ N (53)

which exactly recovers the result in [23].

The basic idea of Condition (a) is to consider the evolution of system state at sampling instant

tk, and the asymptotic convergence of x̃(tk) guarantees the asymptotic stability of system (13)–

(15). However, if one attempts to make some further extensions of Condition (a) such as robust

sampling case and L2-gain performance analysis, the presence of exponential term eÃiTs makes

such extensions difficult.

2. Condition (b) basically is an extension of the result in [28], from dwell time switching to peri-

odically event-triggered switching. Regardless of event-triggering condition, system (7)–(9) is a

switched system with a periodic dwell time Ts, and if we deactivate the switching rule (17) to

consider passive switching, it leads to πji = 1 and πpi = 0, p ̸= j, thus (26) is rewritten to

Pj(0)− Pi(Ts) ≺ 0, j ̸= i, i, j ∈ N (54)

Together with (24), (25), the result in [28] is recovered.

Still consider system (7)–(9) regardless of event-triggering condition, (26) becomes∑N

j=1
πjiPj(0)− Pi(Ts) ≺ 0 (55)

Then, let us consider the special case with sampling interval Ts → 0. In this case, we have to let

the continuous matrix function Pi(t) = Pi, i ∈ N , then (25) implies D(Ãi, Pi) = C (Ãi, Pi), and

(26) arrives at ∑N

j=1
πjiPj − Pi ≺ 0 (56)

From the fact of
∑N

j=1 πjiPj − Pi =
∑N

j=1 ϕjiPj , Φ ∈ MN
c , i, j ∈ N , (56) leads to∑N

j=1
ϕjiPj ≺ 0 (57)

Combining (25), (57), the following result can be established

C (Ãi, Pi) +
∑N

j=1
ϕjiPj ≺ 0, Φ ∈ MN

c , i, j ∈ N (58)

which exactly recovers result in [23] for min-switching rule. Therefore, Condition (b) is an

extension to sampling case and further to event-triggered case. One point need to be noted this
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Table 1: Computational complexities of Conditions (a), (b) and (c) with fixed Π ∈ MN
d

Number of Variables LMI Constraints

Condition (a) (4n2N + 2nN)/2 + 2 6nN + 2

Condition (b) ∞ ∞
Condition (c) (4n2 + 2n)(M + 1)/2 + 2 6nN(M + 1) + 2

min-switching law may introduce Zeno behaviors, but if we let Ts be a positive constant in our

periodic event-triggered rule, one advantage is the elimination of Zeno behavior in switching.

In comparison with Condition (a), Condition (b) does not have any exponential terms which

facilitates its further extensions to solve other problems. However, it is not numerically testable

to check the existence of such time-varying matrix functions Pi(t), i ∈ N .

3. Condition (c) is a discretized version Condition (b), and similar as what has been discuss for

Condition (b), if we discard the event-triggering condition and (30) becomes∑N

j=1
πjiPj,0 − Pi,M ≺ 0 (59)

which recovers the result in [22]. Moreover, if we further deactivate the min-switching strategy,

(30) can be reduced to

Pj,0 − Pi,M ≺ 0 (60)

to recover the result in [24] for switched system under dwell time constraint.

With a particularly constructed Pi(t), i ∈ N , Condition (c) recasts the search for a continuous

matrix function Pi(t) as a finite number of matrices Pi,m, m ∈ {0, . . . ,M}, i ∈ N , which is

solvable for many current tools.

4. Though the three conditions are equivalent, the computation complexities are different. Condi-

tion (a) looks simpler and computationally much more efficient, see Table 1 for the comparison of

computational complexities with a prescribed Π ∈ MN
d . Condition (b) is actually not numerically

tractable by the present tools, so a special structure of Pi(t), i ∈ N , is employed in Condition

(c), it turns the infinite number of decision variables in time-varying Pi(t), i ∈ N into a finite

number of matrices Pi,m, m ∈ {0, . . . ,M}, i ∈ N . However, the equivalency of Condition (c) to

Conditions (a) and (b) has to be established based on a sufficient large M , and the computation

cost increases as M grows, see Table 1. Though more computation cost has to pay in Condition

(c), the further extensions beyond stability become possible.

Example 1 Consider a switched system with two modes

[
A1

B⊤
1

]
=

 1 3

6 −2

1 0.5

 ,

[
A2

B⊤
2

]
=

 −1.3 −1.6

−3.3 0.3

0.2 0.3


The feedback gains are K1 = [−5.1744 − 5.1904] and K2 = [18.7593 16.3442], which ensure

the Ai + BiKi, i ∈ {1, 2}, are Hurwitz stable. The event triggering condition is Γ(x(tk), x̂(tk)) =

∥x̂(tk)− x(tk)∥ − ∆ ∥x(tk)∥, where ∆ > 0. To search for Π ∈ MN
d , we define π11 ∈ [0, 1] and

π12 ∈ [0, 1], then π21 = 1 − π11 and π22 = 1 − π12, respectively. The increments dπ11 = 0.1 and
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Figure 2: The least values of sufficiently large parameter M for Condition (c) to verify GUAS

Table 2: Computational time (second) of Condition (c) with a fixed Π ∈ MN
d

Ts = 0.1 Ts = 0.2 Ts = 0.3 Ts = 0.4 Ts = 0.5

∆ = 0.1 3.045 4.842 6.235 7.682 12.372

∆ = 0.2 3.767 4.881 6.349 8.628 13.680

∆ = 0.3 3.624 6.349 8.932 9.158 14.046

∆ = 0.4 3.814 5.817 9.434 16.745 16.750

∆ = 0.5 3.983 9.738 12.186 20.909 29.081

dπ12 = 0.1 are taken to divide [0, 1], and use the discretized points to turn the conditions in Conditions

(a) and (c) into LMI feasibility problems.

First, we use Condition (a) to verify that the GUAS can be established with sampling times Ts =

{0.1, 0.2, 0.3, 0.4, 0.5} and state error ∆ = {0.1, 0.2, 0.3, 0.4, 0.5}. Then, to show the equivalence,

we use Condition (c) to obtain same GUAS results, provided with sufficiently large parameters M . The

results are shown in Figure 2.

Figure 2 shows the existence of sufficiently large M ensuring the equivalence of Conditions (a)

and (c). However, the computational complexities of two theorems are different. The computational

complexity of Condition (a) is fixed if the number of subsystems and system order are fixed, as Table

1 shows, but the computational complexity of Condition (c) increases as M grows. The computational

time is given in Table 2. Larger ∆ or Ts will lead to more computational time which is listed in Table 2

is because larger ∆ or Ts needs larger M to establish the stability, as what Figure 1 shows. Taking the

Ts = 0.2 for example, ∆ = 0.2 needs M = 2 and, on the other hand, ∆ = 0.3 needs M = 4. Larger M

has more computational complexities as shown in Table 1. If the M are same, e.g. the case Ts = 0.1,

∆ = 0.2 and ∆ = 0.3 both need M = 2, so the computational times are similar.
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Despite the equivalence of Conditions (a), (b) and (c), the main advantage of Condition (c) lies

in its convenience of extending to solve further problems. In next sections, extensions will be made

to robust sampling case and L2-gain performance analysis for event-triggered switched control system

based on Condition (c).

4 Robust Sampling Scheme

In this section, the uncertainties in sampling interval will be considered. To further develop a robust

switching rule (17), the sampling interval is generalized to Ts ∈ [Tmin, Tmax]. Similar as the general-

ization from periodic switching to aperiodic switching in [30], the generalization of Conditions (a) and

(b) in Theorem 1 can be made simply by replace a fixed Ts by a variable τ ∈ [Tmin, Tmax] in these

conditions. For instance, Condition (a) can be directly generalized as

E (Ãi, Jh,
∑N

j=1
πjiPj , Pi + (−1)hµhe

Ã⊤
i τQeÃiτ , τ) ≺ 0, i ∈ N , h ∈ {1, 2} (61)

holds for all τ ∈ [Tmin, Tmax]. However, it is difficult to check (61) for all τ ∈ [Tmin, Tmax] which

has infinitely many number for checking in an interval [Tmin, Tmax], due to the continuity argument

and intricate dependence of (61) with τ ∈ [Tmin, Tmax]. Thus, it is difficult to numerically verify the

stability by (61) which actually requires infinite values for checking.

In order to establish a numerically tractable method for robust sampling interval Ts ∈ [Tmin, Tmax],

we resort to generalize Condition (c). Like the extension from dwell time to ranged dwell time in [30]

for sampled-data systems, the following theorem can be developed for robust sampling interval in the

framework of event-triggered control scheme.

Theorem 2 Consider event-triggered switched control system (13)–(15) with ω(t) = 0, if there exist

scalars M ∈ N \ {0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN
d and symmetric matrices Pi,m ∈ R2n×2n,

m ∈ {0, . . . ,M}, i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (62)

D1(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (63)

D2(Ãi, Pi,m+1, Pi,m, δ) ≺ 0, m ∈ {0, . . . ,M − 1} (64)

Ωi,h,m̂ ≺ 0, m̂ ∈ {M, . . . ,M}, h ∈ {1, 2} (65)

where δ = Tmax/M , M = int{MTmin

Tmax
} and Ωi,h,m̂ = J⊤

h

∑N
j=1 πjiPj,0Jh−Pi,m̂−(−1)hµhQ, then system

(13)–(15) with ω(t) = 0 is GUAS under sampled switching rule (17) with Pi = Pi,0, i ∈ N .

Proof . SinceM = int{MTmin

Tmax
}, we have MTmax

M ≤ Tmin which implies that the interval [Tmin, Tmax] ⊆∪
m̂=M,...,M−1 Im̂.

Considering Pi(t), t ∈ [0, Tmax] defined by{
Pi(t) = (1− θ(t))Pi,m + θ(t)Pi,m+1

θ(t) = Mt/Tmax −m
, t ∈ Im (66)

where 0 ≤ θ(t) ≤ 1. First by (62), we can obtain Pi(t) ≻ 0, t ∈ [Tmin, Tmax]. Then, (63) and (64) have

D(Ãi, Pi(t)) ≺ 0, and for any τ ∈ [Tmin, Tmax], it is obtained

Pi,0 = Pi(0) ≻ eÃ
⊤
i τPi(τ)e

Ãiτ , τ ∈ [Tmin, Tmax] (67)
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by integrating D(Ãi, Pi(t)) ≺ 0 over [0, τ ]. Then, (65) implies that

eÃ
⊤
i τJ⊤

h

∑N

j=1
πjiPj,0Jhe

Ã⊤
i τ − eÃ

⊤
i τPi(τ)e

Ã⊤
i τ − (−1)hµhQ̃(τ) ≺ 0 (68)

holds for τ ∈ [Tmin, Tmax], where Q̃i(τ) = eÃ
⊤
i τQeÃiτ . Using (67) into (68) and letting Pi = Pi,0,

i ∈ N , it reaches that

E (Ãi, Jh,
∑N

j=1
πjiPj , Pi + (−1)hµhQ̃(τ), τ) ≺ 0, τ ∈ [Tmin, Tmax] (69)

which is exactly (61), thus the robust GUAS can be established. �

In comparison with (61), the extension of Condition (a), which has an infinite many decision

variables to search, Theorem 2 only has a finite number of decision variable to check the GUAS for

event-triggered switched system with ranged sampling intervals. The numerically tractable feature

is an obvious advantage over (61) which is a straightforward extension from Condition (a), and this

promising feature of Theorem 2 which is actually a generalization of Condition (c) basically benefits

from the fact that the system matrices Ãi are affine in the corresponding conditions.

5 L2-Gain Performance Analysis

In the presence of disturbance ω(t), L2-gain performance is a disturbance attenuation performance

for event-triggered switched system (13)–(15). The basic idea of Condition (a) in Theorem 1, that is

abstracting continuous-time system (13)–(15) into a discrete-time version, is difficult to be extended

from stability analysis to L2-gain performance analysis, since the discrete-time abstraction only de-

fines the input-output relation at sampling instants tk, losing the information over interval (tk, tk+1).

Moreover, the technical difficulties for extension mainly lies in the exponential term eÃiTs . On the

other hand, Condition (c) in Theorem 1 can be extended owing to the affineness in system matrix Ãi.

In the following, a numerically tractable result is proposed for L2-gain performance analysis.

Theorem 3 Consider event-triggered switched control system (13)–(15), if there exist scalars M ∈
N\{0}, µh > 0, h ∈ {1, 2}, a matrix Π ∈ MN

d and symmetric matrices Pi,m ∈ R2n×2n, m ∈ {0, . . . ,M},
i ∈ N , such that, for i ∈ N ,

Pi,m ≻ 0, m ∈ {0, . . . ,M} (70)

Ξi,m,1 ≺ 0, m ∈ {0, . . . ,M − 1} (71)

Ξi,m,2 ≺ 0, m ∈ {0, . . . ,M − 1} (72)

Ωi,h ≺ 0, h ∈ {1, 2} (73)

where Ωi,h = J⊤
h

∑N
j=1 πjiPj,0Jh − Pi,M − (−1)hµhQ, and

Ξi,m,1 =

 D1(Ãi, Pi,m+1, Pi,m, Ts/M) ∗ ∗
Ẽ⊤

i Pi,m+1 −γ2I ∗
C̃i D̃i −I


Ξi,m,2 =

 D2(Ãi, Pi,m+1, Pi,m, Ts/M) ∗ ∗
Ẽ⊤

i Pi,m −γ2I ∗
C̃i D̃i −I
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then switched system (13)–(15) is GUAS and has an L2-gain γ under sampled switching rule (17) with

Pi = Pi,0, i ∈ N .

Proof . The GUAS can be easily obtained by Condition (c) in Theorem 1, thus we focus on the

L2-gain performance in the following. First, we let

Ω(t) = ∥y(t)∥2 − γ2 ∥ω(t)∥2 (74)

and

Jk(t) =

∫ t

t+k

Ω(s)ds, t ∈ [t+k , t
−
k+1] (75)

which can imply that

Jk(t
−) =

∫ t−

t+k

(
Ω(s) +D+Vi(x̃(s))

)
ds−Vi(x̃(t

−)) + Vi(x̃(t
+
k )) (76)

where Vi(x̃(t)) is defined as Vi(x̃(t)) = x̃⊤(t)Pi(t)x̃(t), i ∈ N , with Pi(t), i ∈ N , defined by (31).

Then, by (75), it can be deduced that
∫∞
t0

Ω(s)ds =
∑∞

k=0 Jk(t
−
k+1), which can be rewritten as

∫ ∞

t0

Ω(s)ds =
∑∞

k=0

∫ t−k+1

t+k

(
Ω(s) +D+Vi(x̃(s))

)
ds+

∑∞

k=1

(
Vj(x̃(t

+
k ))− Vi(x̃(t

−
k ))

)
+ Vi(x̃(t0))

(77)

From (73), one has

Vj(x̃(t
+
k ))− Vi(x̃(t

−
k )) ≤ 0, ∀tk ∈ S (78)

is satisfied with min-switching rule (17). Moreover, it is obtained that

Ω(t) +D+Vi(x̃(t)) = ζ⊤(t)

[
Λi Pi(t)Ẽi + C̃⊤

i Di

∗ D̃⊤
i D̃i − γ2I

]
ζ(t) (79)

where ζ⊤ = [x̃⊤(t) ω⊤(t)], Λi = D(Ãi, Pi(t)) + C̃⊤
i C̃i.

Thus, from (71), (72), it gives Ω(t)+D+Vi(x̃(t)) < 0. Together with (78) and x̃(t0) = 0, we obtain∫ ∞

t0

Ω(s)ds < 0 (80)

which leads to
∫∞
t0

∥y(t)∥2 dt ≤ γ2
∫∞
t0

∥ω(t)∥2 dt when ω(t) ̸= 0. Therefore, the L2-gain performance

is guaranteed. The proof is complete. �

From Theorem 3, it should be stressed that although the min-switching rule (17) only acts at

sampling instants tk ∈ S, the L2-gain level which is defined over [t0,∞) can be estimated. This

is because (71) and (72) fully characterize the input-output property in the sense of L2-gain during

[tk, tk+1). Moreover, if the robust sampling scheme is considered, the similar extension can be easily

made as Theorem 2.

Under the framework of Theorem 3, an estimate of the L2-gain can be obtained by

min γ2

s.t. (70), (71), (72), (73)
(81)
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Figure 3: Suboptimal L2-gain γ with respect to different M

Same as the stability analysis result, the computational results obtained by solving the linear-matrix-

inequality-based optimization problems (81) also depend on the choice of M . Less conservative results

will be obtained with larger M , at the expense of higher computational cost, which will be shown by

the following example.

Example 2 Consider a switched system with two modes same as in Example 1, and Ci, Di, Ei,

i ∈ {1, 2} are chosen as below:

C1 = C2 = [1 1], E1 = E2 =

[
0.2

0.5

]
, D1 = D2 = 0.5 (82)

We still consider π11 ∈ [0, 1] and π12 ∈ [0, 1] with π21 = 1 − π11 and π22 = 1 − π12, respectively,

the increments ∆π11 = 0.1 and ∆π12 = 0.1 are taken to divide [0, 1], and search the optimal γ for

these discretized points by Theorem 3. The suboptimal L2-gain is obtained as the minimal value of

the optimal γ of all discretized points. Furthermore, given a constant sampling time Ts = 100 ms and

∆ = {0.1, 0.2, 0.3, 0.4, 0.5}, the suboptimal L2-gain γ with respect to different M are shown in Figure

3. From Figure 3, it can be observed that the estimated L2-gain γ decreases as M increases, this is

because that a larger M implies a finer division of the sampling interval, and thus a less conservative

result can be obtained. Moreover, it can be also found that the control performance becomes worse

with a larger state error ∆ in event trigger condition, this is consistent with the actual situation. The

increasing computational complexities along with M is same as in Table 2, which is not presented here.

6 Conclusions

In this paper, the event-triggered control for switched linear systems has been studied. Three stability

criteria are proposed to ensure asymptotic stability of switched system subject to min-switching rule
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which is only allowed to activate at sampling instants. It has been proved that the three stability

criteria are equivalent. Then, taking advantages of one stability criterion with affineness in system

matrices, extensions to robust sampling scheme and L2-gain analysis. In the future work, the controller

design, switching rule design and event-triggering condition design should be taken into account based

on the stability analysis results proposed in this paper.
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A Proof of Lemma 1

First, given (22) and 0 ≺ Y (t) ≺ ϵI, t ∈ [0, Ts], with a sufficiently small ϵ > 0, obviously we can obtain

Pm ≻ e−A⊤δmP0e
−Aδm − ϵ

∫ δm

0

e−A⊤(δm−t)e−A(δm−t)(t)dt ≻ 0, m ∈ {0, . . . ,M}

holds for any initial P0 ≻ 0.

Letting Zm =
∫ δm
0

e−A⊤(δm−t)Y (t)e−A(δm−t)(t)dt and substituting (22) into D1(A,Pm+1, Pm, δ) to

get

D1(A,Pm+1, Pm, δ) = ϑm,1(δ) + ϑm,2(δ) + ϑm,3(δ) (83)

where δ = Ts/M and

ϑm,1(δ) = e−A⊤δmΩ(h)e−Aδm

Ω(δ) = C (A,P0) + E (A, I, P0/δ, P0/δ, δ)

ϑm,2(δ) = −C (A,Zm)

ϑm,3(δ) = (Zm − Zm+1)/δ

Due to limδ→0+ supE (A, I, P0/δ, P0/δ, δ) = −C (A,P0), therefore it yields that limδ→0+ supΩ(δ) = 0,

which implies

lim
δ→0+

supϑm,1(δ) = 0 (84)

Moreover, due to 0 ≤ δm ≤ Ts, it implies that e−Aδm is bounded, ϑm,1(δ) uniformly converges to zero.

In addition, it can be seen that

lim
δ→0+

supϑm,3(δ) = −Y (δm) + C (A,Zm) (85)

which results in
lim

δ→0+
sup(ϑm,2(δ) + ϑm,3(δ)) = −Y (δm) (86)

which implies that limδ→0+ sup(ϑi,m,2(δ) + ϑm,3(δ)) ≺ 0 due to Y (t) ≻ 0, t ∈ [0, Ts].
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In conclusion, with the aid of (84) and (86), we have

lim
δ→0+

supD1(A,Pm+1, Pm, δ) ≺ 0 (87)

so there exists a sufficiently small δ∗1 such that

D1(A,Pm+1, Pm, δ) ≺ 0 (88)

holds for all δ < δ∗1 .

By a similar procedure as above, we can consider D2(A,Pm+1, Pm, δ) to obtain

lim
δ→0+

supD2(A,Pm+1, Pm, δ) ≺ 0 (89)

and we can find a sufficiently small δ∗2 such that

D2(A,Pm+1, Pm, δ) ≺ 0 (90)

holds for all δ < δ∗2 .

By setting δ∗ = min{δ∗1 , δ∗2}, we can conclude that there exists a sufficiently small δ∗ such that (20)

and (21) hold for any δ < δ∗. Due to δ = Ts/M , it is equivalent to the existence of a sufficiently large

M∗ such that (20) and (21) hold for any M > M∗.
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