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Output Reachable Set Estimation for Switched
Linear Systems and Its Application in Safety

Verification
Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson

Abstract—This paper addresses the output reachable set es-
timation problem for continuous-time switched linear systems
consisting of Hurwtiz stable subsystems. Based on a common
Lyapunov function approach, the output reachable set is estimat-
ed by a union of bounding ellipsoids. Then, multiple Lyapunov
functions with time-scheduled structure are employed to estimate
the output reachable set for switched systems under dwell time
constraint. Furthermore, the safety verification problem of uncer-
tain switched systems is investigated based on the result of output
reachable set estimation. First, a sufficient condition ensuring the
existence of an approximate bisimulation relation between two
switched linear systems with a prescribed precision is proposed.
Then, the safety verification for an uncertain switched system
can be performed through an alternative safety verification for a
switched system with exact parameters. Numerical examples are
provided to illustrate our results.

Index Terms—Reachable set estimation, safety verification,
switched system, uncertain system.

I. INTRODUCTION

Switched systems are a typical class of hybrid system-
s, which consist of a family of subsystems described by
continuous or discrete-time dynamics, and a switching law
that specifies the active subsystem at each time instant. Due
to the multi-modal feature, switched systems can efficiently
model practical systems that are inherently multi-modal, i.e.,
several dynamical subsystem models are required to describe
their behaviors. So far, the research on switched systems has
attracted significant attention and an extensive literature is by
now available, for example in stability and stabilization [1]–
[5], controllability and reachability analysis [6], H∞ control
and filtering [7]–[9].

Reachable set estimation aims to derive a closed bounded
set that constrains all the state trajectories generated by a
dynamic system with a prescribed initial state set and an
input set. As its further extension, the output reachable set
estimation is to derive a closed bounded set containing the set
of all outputs of a system. Reachable set estimation problem
is not only of theoretical interest in robust control theory
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[10], but also closely related to practical engineering for the
safety verification problems [11]. In some early work, the
reachable set bounding was considered in the context of state
estimation and it has later received a lot of attention in pa-
rameter estimation, see [12] and references therein. Recently,
many researchers have been interested in employing ellipsoidal
techniques based on Lyapunov function approaches to estimate
the reachable sets for different classes of systems. In the
framework of bounding ellipsoid, the quadratic Lyapunov
function has played a fundamental role in the reachable set
estimation problem, and it has been further developed to time-
delay systems [13]–[16], singular systems [17], discrete-time
switched systems under arbitrary switching [18] and periodic
switching [19]. However, according to the best of the authors’
knowledge, the reachable set estimation for continuous-time
switched systems with dwell-time restriction has not been fully
investigated, and it therefore motivates our study.

In this paper, the contributions are two folds. First, we study
the output reachable set estimation problem for continuous-
time switched linear systems consisting of Hurwitz stable sub-
systems. In the arbitrary switching case, an over approximation
of output reachable set is obtained as a union of a collection
of bounding ellipsoids centered around origin and moreover,
a linear matrix inequality (LMI) based optimization problem
is formulated to obtain the smallest estimated reachable set.
These results are all derived in the framework of a common
Lyapunov function shared across modes, however, it may yield
overly conservative results, especially when some information
of switching laws is available. Thus, with regard to a class of
time-dependent switching signal under dwell time constraint, a
time-scheduled multiple Lyapunov function approach is further
employed and preciser estimation results can be achieved.
In particular, it is worth mentioning that this time-scheduled
multiple Lyapunov function approach covers the common Lya-
punov function approach. In some papers, e.g., [20], [21], the
finite-time boundedness is used for bounding state trajectories
of a system, but it focuses on a finite-time interval other
than all time along the system operation. Furthermore, the
estimation from initial time to infinity is necessary for some
problems such as the bisimulation and safety verification in
the second contribution in this paper.

Based on the results for output reachable set estimation
and inspired by approximate bisimulation relations in [22]–
[24], a sufficient condition is derived to establish the existence
of approximate bisimulation of two switched linear systems.
Then, since the safety verification for uncertain systems is
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difficult due to the uncertain time-varying coefficients in the
system matrices, one would ask: Can we find a bisimilar
system with exact parameters for an uncertain system and
perform a safety verification for the bisimilar system to ensure
the safety of the uncertain system? In this paper, an LMI-based
method is proposed to convert the uncertain switched system
into a switched system with exact parameters along with a
precision between two systems, so that the safety verification
for uncertain systems can be performed by verifying the
safety of the transformed systems, avoiding the difficulties in
handling the uncertainties.

The rest of this paper is organized as follows. Some prelim-
inaries and problem formulation are given in Section II. The
main results on output reachable set estimation is proposed in
Section III. In Section IV, the application to safety verification
for uncertain switched systems is presented. Conclusions are
given in Section V.

Notation: N represents the set of natural numbers. R and
R≥0 denote the fields of real numbers and nonnegative re-
al numbers, respectively. Rn is the vector space of all n-
tuples of real numbers, Rn×n is the space of n × n ma-
trices with real entries. Sn×n

+ is the set of real symmet-
ric positive definite n × n matrices. The notation P ≻ 0
(P ≺ 0) means P is real symmetric and positive definite
(negative definite). A⊤ denotes the transpose of A, and we
let Sym(A) = A⊤ +A. In symmetric block matrices, we use
* as an ellipsis for the terms that are introduced by symmetry.
diag{· · · } denotes a block-diagonal matrix. ∥·∥ stands for
the Euclidean norm. The bounding ellipsoid is expressed by
E(R) , {x ∈ Rn | x⊤Rx ≤ 1, R ∈ Sn×n

+ }, and ball
B(x0, δ) , {x ∈ Rn | ∥x− x0∥ ≤ δ, x0 ∈ Rn, δ > 0}.
The right derivative of a matrix function F (x) is defined by
Ḟ (x) , limh→0+

F (x+h)−F (x)
h . For the sake of simplicity, we

denote L (A,B, P,R, α) ,
[

A⊤P + PA+ αP ∗
B⊤P −αR

]
.

II. SWITCHED SYSTEMS AND OUTPUT REACHABLE SET

In this paper, we consider a continuous-time switched linear
system in the form of

Σ : ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (1)
y(t) = Cσ(t)x(t) (2)

where x(t) ∈ Rnx are the state of the system, and the initial
condition x0 belongs to a bounded ellipsoid:

x0 ∈ X0 , E(R0) (3)

and u(t) ∈ Rnu is the input vector which is assumed to satisfy
the following ellipsoidal constraint:

u(t) ∈ U , E(Ru), ∀t ∈ R≥0 (4)

and y(t) ∈ Rny is the output. Define index set M ,
{1, 2, . . . , N}, where N is the number of modes and, σ :
R≥0 → M denotes the switching function, which is assumed
to be a piecewise constant function continuous from right and
only non-Zeno swtichings (i.e., the switch at most a finite
number of times in any finite time interval) are considered in
this paper. The switching instants are expressed by a sequence

S , {tk}k∈N, where t0 is the initial time and tk is the kth
switching instant. Then, we define Ii , {t ∈ R≥0 | σ(t) =
i, i ∈ M} to denote the activation time interval for ith mode.
Obviously, we can see that

∪
i∈M Ii = R≥0 and Ii ∩ Ij = ∅,

for i ̸= j, ∀i, j ∈ M.
The output reachable set of system (1)–(2) is defined as

Ry , {y(t) ∈ Rny | x(t),y(t), x0, u(t) satisfy

(1), (2), (3), (4), t ∈ R≥0} (5)

The following lemma introduces the main idea to determine
the over-approximate set R̃y for switched system (1)–(2).

Lemma 1: Consider system (1)–(2) under initial state con-
dition (3) and input condition (4). If there exist a family of
Lyapunov functions Vi : Rnx → R≥0, i ∈ M, satisfying
Vi(0) = 0 and Vi(x) > 0, ∀x ̸= 0, ∀i ∈ M, matrices
Ri,y ∈ Sn×n

+ , i ∈ M, and scalars α > 0, 0 < β ≤ 1 such that

Fi(t) ≤ 0, ∀t ∈ Ii, ∀i ∈ M (6)
Gi,j(tk) ≤ 0, ∀tk ∈ S, i ̸= j, ∀i, j ∈ M (7)

Vi(x0) ≤ x⊤
0 R0x0, ∀i ∈ M (8)

x⊤(t)C⊤
i Ri,yCix(t) ≤ Vi(x(t)), ∀t ∈ Ii, ∀i ∈ M (9)

where Fi(t) = V̇i(x(t)) + αVi(x(t)) − αu⊤(t)Ruu(t) and
Gi,j(tk) = Vi(x(t

+
k ))−βVj(x(t

−
k ))+β− 1. Then, the output

reachable set Ry satisfies Ry ⊆ R̃y ,
∪

i∈M E(Ri,y).
Proof: See the Appendix.

Remark 1: Conditions (6) and (7) actually characterize an
invariant set Ω =

∪
i∈M Ωi, where Ωi = {x(t) ∈ Rnx |

Vi(x(t)) ≤ 1}, i ∈ M. By (6), it leads to V̇i(x(t)) < 0,
∀x(t) ∈ Ω̄i , {x(t) ∈ Rnx | Vi(x(t)) > 1}, this guarantees
that once the state x(t) enters Ωi, it remains in it during
the activation time of the ith subsystem. However, (6) is not
enough to ensure x(t) staying in Ω forever, in presence of
abrupt changes from Vi(x(t

+
k )) to Vj(x(t

−
k )), where i ̸= j

at switching instant tk ∈ S. Thus, (7) is necessary to
define the invariant Ω. It ensures that Vi(x(t

+
k )) ≤ 1 when

Vi(x(t
−
k )) ≤ 1, that means the switching actions will not

cause x(t) escaping from Ω. In addition, (8) implies that the
initial state x0 ∈ X0 ⊆

∩
i∈M Ωi, and (9) estimates the output

reachable set based on the invariant set Ω.

III. OUTPUT REACHABLE SET ESTIMATION

Although Lemma 1 provides a general framework to handle
the output reachable set estimation problem, it is impracti-
cal for actual use, since it does not provide any available
computational techniques for the construction of Lyapunov
functions Vi(x(t)), i ∈ M. Moreover, the proposed condition
(7) requires us to check the values of Lyapunov functions
at all the switching instant tk ∈ S . However, the switching
instant sequence S usually cannot be specified in advance,
and it is impossible to check Lemma 1 for all the switching
instants tk in the case of k → ∞. In the following, numerically
tractable methods are presented to solve the output reachable
set estimation problem in the framework of Lemma 1.
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A. Common Lyapunov Function

One natural idea to analyze switched system (1)–(2) is to use
common quadratic Lyapunov function Vi(x(t)) = V (x(t)) =
x⊤(t)Px(t), i ∈ M, to avoid checking (7) for every tk ∈ S .

Theorem 1: Consider system (1)–(2) under initial state con-
dition (3) and input condition (4). If there exist matrices
P ∈ Snx×nx

+ , Ri,y ∈ Sn×n
+ , i ∈ M, and a scalar α > 0

such that

L (Ai, Bi, P,Ru, α) ≺ 0, ∀i ∈ M (10)

C⊤
i Ri,yCi ≺ P ≺ R0, ∀i ∈ M (11)

then, the output reachable set Ry ⊆ R̃y ,
∪

i∈M E(Ri,y).
Proof: Construct a Lyapunov function in the form

of V (x(t)) = x⊤(t)Px(t), P ∈ Sn×n
+ . Let us con-

sider F (t) = V̇ (x(t)) + αV (x(t)) − αu⊤(t)Ruu(t), and
along with the trajectory of system (1)–(2), we have
F (t) = χ⊤(t)L (Ai, Bi, P,Ru, α)χ(t), where χ⊤(t) =
[x⊤(t) u⊤(t)], and from (10), it yields F (t) < 0, ∀t ∈ R≥0,
so that (6) holds.

Then, since the common Lyapunov function is chosen, (7)
automatically holds with β = 1. By (11), P ≺ R0 ensures
V (x0) < x⊤

0 R0x0, and C⊤
i Ri,yCi ≺ P , i ∈ M, guarantees

x⊤(t)C⊤
i Ri,yCix(t) < V (x(t)), ∀t ∈ R≥0, ∀i ∈ M, that

is (8) and (9) hold. Thus, by Lemma 1, we have the output
reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y).

Remark 2: The set R̃y is usually expected to be as small
as possible to achieve a precise estimate of reachable set Ry .
Based on Theorem 1, one may add an additional constraint
that

Ri,y ≽ ϵI, ϵ > 0, ∀i ∈ M (12)

which implies that ϵy⊤(t)y(t) ≤ y⊤(t)Ri,yy(t) ≤ 1, namely
y(t) ∈

∪
i∈M E(Ri,y) ⊆ B(0, 1/

√
ϵ), ∀t ∈ R≥0, so we have

to maximize ϵ to obtain the smallest ball B(0, 1/
√
ϵ) by

max ϵ s.t. (10), (11) and (12) (13)

Moreover, due to the existence of the tuning parameter
α, the result in Theorem 1 and corresponding optimization
problem (13) are not standard LMI problems, they are bilinear
matrix inequality (BMI) problems and known to be NP-
hard. Fortunately, several algorithms are available to solve
BMI problems such as the iterative linear matrix inequality
(ILMI) approach in [25], [26], or using numerical optimization
algorithms, such as fminsearch [13] or genetic algorithm
(GA) [18] in the optimization toolbox of Matlab.

B. Multiple Lyapunov Functions

Switching actions are able to significantly affect the evolu-
tion of switched systems, for example the instability arises as
a result of a rapid switching between stable subsystems. Simi-
larly, the switching rate has a great impact on the reachable set
as well. Thus, given a switching rate, how to estimate the set
Ry is one of the basic problems for reachable set estimation.
In this work, the concept of minimum dwell time is given to
constrain the switching rate.

Definition 1: [27] Given a switching signal function σ(t)
with a generated switching sequence S, τmin = infk∈N{tk+1−

tk} is called the dwell time of σ(t), and Dτmin , {σ(t) | σ :
R≥0 → M, tk+1 − tk ≥ τmin,∀k ∈ N} denotes the set of all
switching policies with dwell time greater than τmin.

We consider a class of time-scheduled multiple Lyapunov
functions inspired by [28]–[31] as follows:

Vi(x(t)) = x⊤(t)Pi(t)x(t), t ∈ R≥0, i ∈ M (14)

where Pi(t) ∈ Sn×n
+ , i ∈ M have the following structure:

Consider the interval [tk, tk + τmin), we partition it into
L segments described as Lk,q , [tk + θq, tk + θq+1), q =
0, 1, . . . , L− 1 of equal lengths h = τmin/L, and then θ0 = 0
and θq = qh = qτmin/L. We consider a class of continuous
matrix function Pi(t), t ∈ [tk, tk + τmin) chosen to be linear
within each segment Lk,q , q = 0, 1, . . . , L− 1. Explicitly, we
can see that

∪L−1
n=0 Lk,n = [tk, tk+τmin) and Lk,n∩Lk,m = ∅,

n ̸= m. Letting Pi,q = Pi(tk + θq), then since the matrix
function Pi(t) is piecewise linear in [tk, tk + τmin), it can
be expressed in terms of the values at dividing points using
a linear interpolation formula, that is, for 0 ≤ µ ≤ 1, q =
0, 1, . . . , L− 1,

Pi(t) = Pi(µ) = (1− µ)Pi,q + µPi,q+1, t ∈ Lk,q, i ∈ M
(15)

where µ = L(t− tk − θq)/τmin.
As a result, the continuous matrix function Pi(t) ∈ Sn×n

+ ,
i ∈ M can be completely determined by Pi,q ∈ Sn×n

+ , q =
0, 1, . . . , L, i ∈ M, in interval [tk, tk + τmin). Then, due to
[tk, tk+τmin) ⊆ [tk, tk+1), for the remaining time in [tk, tk+1)
denoted by Lk,L , [tk,min, tk+1), Pi(t), i ∈ M is set to be

Pi(t) = Pi,L, t ∈ Lk,L, i ∈ M (16)

In summary, Pi(t), i ∈ M is defined as

Pi(t) =

{
Pi(µ), t ∈ Lk,q, q = 0, 1, . . . , L− 1
Pi,L, t ∈ Lk,L

(17)

where µ is defined in (15).
Theorem 2: Given a dwell time τmin > 0 and consider

switched system (1)–(2) with σ(t) ∈ Dτmin under initial state
condition (3) and input condition (4). If there exist matrices
Pi,q ∈ Snx×nx

+ , q = 0, 1, . . . , L, i ∈ M, Ri,y ∈ Sn×n
+ , i ∈ M,

and a scalar α > 0 such that for ∀i, j ∈ M

L (Ai, Bi, Pi,q, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1 (18)
L (Ai, Bi, Pi,q+1, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1

(19)
L (Ai, Bi, Pi,L, Ru, α) ≺ 0 (20)
Pi,0 − Pj,L ≺ 0, i ̸= j (21)
Pi,0 −R0 ≺ 0 (22)

C⊤
i Ri,yCi − Pi,q ≺ 0, q = 0, . . . , L (23)

where Ψi,q = diag{L(Pi,q+1 − Pi,q)/τmin, 0}. Then, the
output reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y).

Proof: Construct a Lyapunov function as V (t) =∑
i∈M ξi(t)x

⊤(t)Pi(t)x(t), where Pi(t), i ∈ M, is defined
by (17) and ξi : R≥0 → {0, 1} and

∑
i∈M ξi(t) = 1 is the

indicator function representing the active modes at time t.
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TABLE I
COMPUTATIONAL COMPLEXITIES OF THEOREM 2 WITH A FIXED α

Number of Decision Variables LMI Constraints Size
nN(L+ 1)(n+ 1)/2 n(N2 + 2N + 3L)

First, let us consider Fi(t) = V̇ (t)+αV (t)−αu⊤(t)Ruu(t),
which can be rewritten to

Fi(t) = χ⊤(t)(L (Ai, Bi, Pi(t), Ru, α) + Ψi(t))χ(t) (24)

where χ⊤(t) = [x⊤(t) u⊤(t)] and Ψi(t) = diag{Ṗi(t), 0}.
Suppose σ(t) = i, t ∈ Lk,q , q = 0, . . . , L− 1, one has

L (Ai, Bi, Pi(t), Ru, α) = (1− µ)Ξi,1 + µΞi,2 (25)

where Ξi,1 = L (Ai, Bi, Pi,q, Ru, α) and Ξi,2 =
L (Ai, Bi, Pi,q+1, Ru, α). Furthermore, we can see that
Ṗi(t) = (Pi,q+1 − Pi,q)µ̇, t ∈ Lk,q , q = 0, . . . , L − 1, and
because of µ = L(t−tk−θq)/τmin, it implies that µ̇ = L/τmin,
leading to Ṗi(t) = Ψi,q, t ∈ Lk,q, q = 0, . . . , L − 1. Thus,
by (18), (19), it leads to

Fi(t) < 0, ∀t ∈
∪L−1

n=0
Lk,n = [tk, tk + τmin) (26)

Then, we consider t ∈ Lk,L. Since Pi(t) = Pi,L, t ∈ Lk,L,
we have Pi(t) = 0, ∀t ∈ Lk,L, thus (20) guarantees that

Fi(t) < 0, ∀t ∈ Lk,L (27)

Thus, from (26) and (27), we can conclude that Fi(t) <
0, ∀t ∈ Ii, ∀i ∈ M, which means (6) in Lemma 1 holds.
Next, (21) ensures (7) holds with β = 1 and (22) guarantees
(8) holds Finally, we consider

C⊤
i Ri,yCi − Pi(t)

=(1− µ)(C⊤
i Ri,yCi − Pi,q) + µ(C⊤

i Ri,yCi − Pi,q+1)

and (23) ensures that C⊤
i Ri,yCi−Pi(t) < 0, ∀t ∈ R≥0, ∀i ∈

M, which implies (9) holds. Therefore, we have the output
reachable set Ry ⊆ R̃y ,

∪
i∈M E(Ri,y) by Lemma 1.

Remark 3: Some remarks on parameter L are given.

(1) Parameter L implies the number of segments consisting
of the dwell time interval [tk, tk + τmin). A larger L
yields a finer division of [tk, tk + τmin), and a less
conservative result can be consequently obtained, which
will be demonstrated by a numerical example later.
However, the computational cost increases as L grows,
since a larger L inevitably introduces more decision
variables and LMI constraints, see TABLE I for the
computational complexity analysis for Theorem 2 for an
n-dimensional switched system consisting of N modes.

(2) Similar as the methods adopted in [20], a piecewise ma-
trix function Pi(µ) in (15) with a sufficiently large L is
able to approximate a generic continuously differentiable
Pi(t) with adequate accuracy over the finite-time interval
[tk, tk + τmin). In other words, if L → ∞, conditions
(18)–(23) in Theorem 2 can be expressed as follows with

i, j ∈ M and t ∈ [0, τmin)

Pi(t) ≻ 0 (28)
L (Ai, Bi, Pi(t), Ru, α) + Ψi(t) ≺ 0 (29)
L (Ai, Bi, Pi(τmin), Ru, α) ≺ 0 (30)
Pi(0)− Pj(τmin) ≺ 0, i ̸= j (31)
Pi(0)−R0 ≺ 0 (32)

C⊤
i Ri,yCi − Pi(t) ≺ 0 (33)

where Ψi(t) = diag{Ṗi(t), 0}. It should be noted that
the above differential linear matrix inequality (DLMI)
(28)–(33) can achieve the result with least conservative-
ness in our framework, but it is not numerically tractable
due to the presence of continuous matrix functions Pi(t).

(3) In another extreme case with L = 0, Pi,q, shrinks to
Pi, moreover, due to (21), we have to choose Pi = Pj ,
i ̸= j. Thus, Theorem 2 is reduced to Theorem 1, namely
the common Lyapunov function result.

Given an L, the smallest ball B(0, 1/
√
ϵ) containing the tra-

jectories of output y(t) in the framework of our approach can
be obtained. Based on Theorem 2, an optimization problem
can be formulated by adding (12) with (18)–(23) as follows:

max ϵ s.t. (12) and (18)− (23) (34)

C. Example

Consider a switched system with two subsystems as

 A1

B⊤
1

C1

 =


−2 1
0 −0.9
3 1
1 0
0 1

 ,

 A2

B⊤
2

C2

 =


−1 0
−1 −1
2 3
1 0
0 1


The initial state is assumed to satisfy x0 ∈ {x0 ∈ R2 |

∥x0∥ ≤ 1} and the input is assumed to satisfy u(t) ∈ {u(t) ∈
R | −1 ≤ u(t) ≤ 1, ∀t ∈ R≥0}, which implies that R0 =
diag{1, 1} and Ru = 1.

First, we use Theorem 1 to estimate the reachable set
R̃y contained in the ball B(0, δ) with the minimal δ, where
δ = 1/

√
ϵ. The minimal δ is 2.9033 obtained by solving

optimization (13) with the aid of fminsearch. It should be
noted that this result is applicable for the arbitrary switching,
since the common Lyapunov function approach is employed.

Next, if the dwell-time constraint is further considered in
the switching signal, we can apply Theorem 2. Suppose dwell
time τmin = 1, we solve optimization problem (34) to obtain
the minimal δ with L = 1, 2, . . . , 10, which are depicted in
Fig. 1. The following two points can be observed in Fig. 1,
which are consistent with Remark 3.

1) The value of δ monotonically decreases as L increases.
This means that a less conservative result, namely a
smaller δ, can be obtained, if a greater L is chosen.

2) The L = 0 is equivalent to the result of common Lya-
punov function approach, but it is more restrictive than
the result obtained by the multiple Lyapunov function
approach with L ≥ 1.
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By Multiple Lyapunov Function 
By Common Lyapunov Function

Fig. 1. Minimized δ = 1/
√
ϵ by the common Lyapunov function approach

(Theorem 1) and the multiple Lyapunov function approach (Theorem 2) with
respect to L = 0, 1, 2, . . . , 10.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3
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−1

0

1

2

3

4

y
1

y 2

R
1,y

R
2,y

Fig. 2. 1000 randomly generated state trajectories are bounded in the
estimated output reachable set R̃y = R1,y ∪R2,y .

Finally, the bounding ellipsoids R1,y and R2,y obtained
with L = 10 are shown in Fig. 2. The switching signal has
tk+1−tk = 1+rand, k ∈ N, where rand is a random number
within [0, 1], thus the switching signal σ(t) ∈ Dτmin with
τmin = 1. With an input u(t) = sin(t), 1000 state trajectories
generated from 1000 random initial states from a unit circle are
illustrated in Fig. 2. As Fig. 2 shows, all the state trajectories
are bounded in the estimated reachable set R̃y = R1,y∪R2,y ,
showing the effectiveness of our approach.

IV. SAFETY VERIFICATION FOR UNCERTAIN SWITCHED
SYSTEM

For the sake of being concise, we focus on the application
of Theorem 2 in the rest of this paper, since Theorem 1 is just
a special case of Theorem 2 with parameter L = 0, see point
(3) in Remark 3.

A. Approximate Bisimulation
For a continuous-time switched linear system Σ de-

scribed by (1)–(2), an approximately bisimilar continuous-time
switched linear system Σ̃ is considered in the following form

Σ̃ : ˙̃x(t) = Ãσ(t)x̃(t) + B̃σ(t)u(t) (35)

ỹ(t) = C̃σ(t)x̃(t) (36)

where x̃(t) ∈ Rñx is the state of the bisimilar system, the
initial state x̃0 is assumed to be in

x̃0 ∈ X̃0 , E(R̃0) (37)

and ỹ(t) ∈ Rny is the output of the bisimilar system. In the
rest of the work, the input u(t) and switching signal σ(t) of
Σ̃ is considered to be same as those for system Σ.

Definition 2: [22] A relation Rδ ⊆ Rnx × Rñx is called
a δ-approximate bisimulation relation between systems Σ and
Σ̃, of precision δ, if for all (x(t), x̃(t)) ∈ Rδ

1) ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈ R≥0,
2) ∀u(t) ∈ U , ∀x(t) satisfies Σ, ∃x̃(t) satisfies Σ̃ such that

(x(t), x̃(t)) ∈ Rδ , ∀t ∈ R≥0,
3) ∀u(t) ∈ U , ∀x̃(t) satisfies Σ̃, ∃x(t) satisfies Σ such that

(x(t), x̃(t)) ∈ Rδ , ∀t ∈ R≥0.
and we say systems Σ and Σ̃ are approximately bisimilar with
precision δ, denoted by Σ ∼δ Σ̃.

Define the following notations x̂(t) = [x⊤(t) x̃⊤(t)]⊤,
ŷ(t) = y(t)− ỹ(t) and[

Âi B̂i Ĉ⊤
i

]
=

[
Ai 0 Bi C⊤

i

0 Ãi B̃i −C̃⊤
i

]
and let 0 ≤ γ ≤ 1, we define R̂0(γ) = diag{γR0, (1−γ)R̃0}.

Since Σ and Σ̃ share same switching signal σ(t) and input
u(t), an augmented system Σ̂ can be derived from Σ and Σ̃
as below

Σ̂ : ˙̂x(t) = Âσ(t)x̂(t) + B̂σ(t)u(t) (38)

ŷ(t) = Ĉσ(t)x̂(t) (39)

with initial state x̂0 ∈ X̂0 , E(R̂0(γ)) and input u(t) ∈ U ,
E(Ru).

Because ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈ R≥0 holds if and only
if ŷ(t) ∈ B(0, δ), ∀t ∈ R≥0, the problem of computing the
distance δ between Σ and Σ̃ can be converted to the problem
of output reachable set estimation for augmented system Σ̂.

Theorem 3: Given a dwell time τmin > 0 and consider
switched systems Σ by (1)–(2) and Σ̃ by (35)–(36) with σ(t) ∈
Dτmin under initial state condition (3), (37) and input condition
(4). If there exist a set of matrices Pi,q ∈ S(nx+ñx)×(nx+ñx)

+ ,
q = 0, 1, . . . , L, i ∈ M and scalars α > 0, 0 ≤ γ ≤ 1, ϵ ≥ 0
such that for ∀i, j ∈ M

L (Âi, B̂i, Pi,q, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1 (40)

L (Âi, B̂i, Pi,q+1, Ru, α) + Ψi,q ≺ 0, q = 0, . . . , L− 1
(41)

L (Âi, B̂i, Pi,L, Ru, α) ≺ 0 (42)
Pi,0 − Pj,L ≺ 0, i ̸= j (43)

Pi,0 − R̂0(γ) ≺ 0 (44)

ϵĈ⊤
i Ĉi − Pi,q ≺ 0, q = 0, . . . , L (45)

where Ψi,q = diag{L(Pi,q+1−Pi,q)/τmin, 0}. Then, we have
an approximation bisimulation relation Rδ , δ = 1/

√
ϵ such

that Σ ∼δ Σ̃.
Proof: Since the initial states x0 ∈ E(R0) and x̃0 ∈

E(R̃0), the initial state x̂0 satisfies

x̂⊤
0 R̂0(γ)x̂0 = γx⊤

0 R0x0 + (1− γ)x̃⊤
0 R̃0x̃0 ≤ 1, 0 ≤ γ ≤ 1

(46)
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Thus, it means that x̂0 ∈ E(R̂0(γ)), 0 ≤ γ ≤ 1.
From Theorem 2, it implies that the output reachable set

of Σ̂ can be estimated by
∪

i∈M E(ϵI) = B(0, δ), where δ =
1/
√
ϵ, so the output ŷ(t) ∈ B(0, δ), ∀t ∈ R≥0. Furthermore,

due to ŷ(t) = y(t) − ỹ(t), we have ∥y(t)− ỹ(t)∥ ≤ δ, ∀t ∈
R≥0, along with the trajectories x(t), x̃(t) generated by Σ
and Σ̃. The approximation bisimulation relation Rδ such that
Σ ∼δ Σ̃ can be established.

The choice of a larger L in Theorem 3 will lead to a
less conservative analysis result, the result with the least
conservativeness can be deduced by letting L → ∞, which
is however numerically intractable. For the particular case
with L = 0, Theorem 3 is reduced to a result by the
common Lyapunov function approach, but it can be used for
the arbitrary switching case.

B. Safety Verification

We consider the system matrices of switched system Σ are
uncertain and satisfy that [Ai Bi C⊤

i ] ∈ Ri, where

Ri , co
{
[A

(1)
i B

(1)
i (C

(1)
i )⊤], . . . , [A

(S)
i B

(S)
i (C

(S)
i )⊤]

}
(47)

where co{·} is the convex-hull operator.
Definition 3: Consider system Σ described by (1)–(2) and

(47) with C
(s)
i = I , ∀s = 1, . . . , S,∀i ∈ M. System Σ is said

to be safe with respect to the unsafe region Ωu, if Ry∩Ωu = ∅.
Let Σ̃ be an approximately bisimilar system such that

Σ ∼δ Σ̃. Denote Ry , Rỹ the output reachable sets of Σ
and Σ̃ respectively, then it can be seen that Ry ⊆ N (Rỹ, δ),
where N (·, δ) denotes the δ-neighborhood of a set. Conse-
quently, to prove that Σ is safe, it is sufficient to verify that
Rỹ ∩N (Ωu, δ) = ∅.

Proposition 1: If Σ ∼δ Σ̃, then Rỹ ∩ N (Ωu, δ) = ∅ ⇒
Ry ∩Ωu = ∅. Namely, Σ̃ is safe with respect to N (Ωu, δ) ⇒
Σ is safe with respect to Ωu.

In the following, a theorem is presented to compute the
system matrices for a bisimilar system for uncertain switched
system Σ.

Theorem 4: Given a dwell time τmin > 0 and consider
uncertain switched systems Σ by (1)–(2), (47) and Σ̃ by
(35)–(36) with σ(t) ∈ Dτmin under initial state condition
(3), (37) and input condition (4). If there exist a set of
matrices Mi ∈ Rnx×nx , Ni ∈ Rnx×nu , Xi ∈ Rnx×nx ,
Yi ∈ Rnx×nx , Zi ∈ Rnx×nx , Si ∈ Rny×nx , Pi,q ∈ S2nx×2nx

+ ,
q = 0, 1, . . . , L, i ∈ M and scalars α > 0, 0 ≤ γ ≤ 1, δ ≥ 0
such that for ∀i, j ∈ M and ∀s = 1, 2, . . . , S,

Ξ
(s)
i,q,1 ≺ 0, q = 0, . . . , L− 1 (48)

Ξ
(s)
i,q,2 ≺ 0, q = 0, . . . , L− 1 (49)

Ξ
(s)
i,L ≺ 0 (50)

Pi,0 − Pj,L ≺ 0, i ̸= j (51)

Pi,0 − R̂0(γ) ≺ 0 (52)[
−Pi,q ∗
W

(s)
i −δ2I

]
≺ 0, q = 0, . . . , L (53)

where R̂0(γ) = diag{γR0, (1− γ)R0}, and

Ξ
(s)
i,q,1 =

 −Sym(U
(s)
i ) + αPi,q +Ψi,q ∗ ∗
−(V

(s)
i )⊤ −αRu ∗

Pi,q +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


Ξ

(s)
i,q,2 =

 −Sym(U
(s)
i ) + αPi,q+1 +Ψi,q ∗ ∗
−(V

(s)
i )⊤ −αRu ∗

Pi,q+1 +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


Ψi,q = L(Pi,q+1 − Pi,q)/τmin

Ξ
(s)
i,L =

 −Sym(U
(s)
i ) + αPi,L ∗ ∗

−(V
(s)
i )⊤ −αRu ∗

Pi,L +Qi − (U
(s)
i )⊤ −V

(s)
i Sym(Qi)


U

(s)
i =

[
XiA

(s)
i Mi

ZiA
(s)
i Mi

]
, V

(s)
i =

[
XiB

(s)
i +Ni

ZiB
(s)
i +Ni

]

W
(s)
i =

[
C

(s)
i −S⊤

i

]
, Qi =

[
Xi Yi

Zi Yi

]
Then, we can obtain an approximately bisimilar system Σ̃

in the form of (35)–(36) and an approximation bisimulation
relation Rδ such that Σ ∼δ Σ̃, where the corresponding system
matrices are[

Ãi B̃i C̃⊤
i

]
=

[
Y −1
i Mi Y −1

i Ni S⊤
i

]
(54)

Proof: First, Qi + Q⊤
i ≺ 0 implies Yi + Y ⊤

i ≺ 0, thus
Yi is nonsingular. Then, substituting Mi = ÃiYi, Ni = B̃iYi

and Si = C̃i into (48), it becomes −Sym(QiÂ
(s)
i ) + αPi,q +Ψi,q ∗ ∗

−(B̂
(s)
i )⊤Q⊤

i −αRu ∗
Pi,q +Qi − (Â

(s)
i )⊤Q⊤

i −QiB̂
(s)
i Qi +Q⊤

i

 ≺ 0

By left-multiplying the third row of above inequality by
(Â

(s)
i )⊤ or (B̂

(s)
i )⊤ and adding it to the first or second row,

and right-multiplying the third column by Â
(s)
i or B̂

(s)
i and

adding it to the first or second column, it yields Sym(Pi,qÂ
(s)
i ) + αPi,q +Ψi,q ∗ ∗

(B̂
(s)
i )⊤Pi,q −αRu ∗

Pi,q +Q⊤
i −QiÂ

(s)
i −QiB̂

(s)
i Qi +Q⊤

i

 ≺ 0

Due to (47) and simple convexity arguments, the above
inequality ensures (40) holds. Through a similar proof, it can
be found that (49) ⇒ (41) and (50) ⇒ (42). Moreover, (51)
and (52) are equivalent to (43) and (44).

Finally, letting ϵ = 1/δ2 and by Schur complement, (53)
ensures that (45) holds. Therefore, the approximation bisimu-
lation Σ ∼δ Σ̃ can be established by Theorem 3.

Given an L, the optimized approximately bisimilar system
Σ̃opt can be obtained by minimizing the precision δ by

min δ2 s.t. (48)− (53) (55)

So far, according to Proposition 1, we can perform the safety
verification for uncertain system Σ with respect to Ωu via
verifying the safety specification of the bisimilar system Σ̃
with respect to the set N (Ωu, δ), the δ-neighborhood of Ωu.
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TABLE II
PRECISION δ WITH L = 1, 2, 3, 4, 5 AND COMPUTATION TIME (C.T.)

WITH A FIXED α

L = 1 L = 2 L = 3 L = 4 L = 5
δ 0.459 0.434 0.425 0.414 0.409

C. T. 0.573 s 0.862 s 1.221 s 4.762 s 15.263 s

C. Example

In this subsection, the safety verification for an uncertain
switched affine system ẋ(t) = Ai(t)x + bi, i ∈ {1, 2}, is
considered. The system matrices are given as blow:[

A1

b⊤1

]
=

 −2 1
γ(t) −0.9
3 1

 ,

[
A2

b⊤2

]
=

 −1 γ(t)
−1 −1
2 3


where γ(t) ∈ [0, 0.1] is an uncertain time-varying parameter.
The initial state is assumed to be x0 ∈ {x0 ∈ R2 | ∥x0∥ ≤
0.1}, which implies that R0 = diag{100, 100}. The switching
signal is a periodic switching law as tk+1 − tk = 1, ∀k ∈ N.

Using Theorem 4, a switched system with exact parameters
can be obtained, with a corresponding precision δ. One point
needs to be clarified here is that (50) can be removed for
this particular periodic switching case, since (50) exactly
corresponds to the interval [tk + τmin,∞) which does not
appear at all. Similar to the experimental results for reachable
set estimation (Section III, C), the precision δ tends to a
smaller value as a larger L is chosen to apply Theorem 4,
see TABLE II for L = 1, 2, 3, 4, 5.

Then, in order to validate our approach, we first let L = 1
and obtain the corresponding system matrices as follows: A1

b⊤1
C1

 =

[ −1.520 0.383
0.152 −1.115

−2.895 −1.087

−0.969 −0.036
−0.0355 −0.9413

]
,

 A2

b⊤2
C2

 =

[ −0.858 −0.091
−0.508 −1.560

−2.043 −3.112

−0.969 −0.036
−0.036 −0.941

]
With the above switched system with exact parameters,

we can conduct the verification for the uncertain switched
system. Given three unsafe regions Ωu,1 , B([0.7 1.7], 0.6),
Ωu,2 , B([2 − 0.2], 0.5) and Ωu,3 , B([3.5 1.5], 0.9),
the new unsafe regions are described by their neighborhoods
Ω̃u,1 , N (Ωu,1, 0.459), Ω̃u,2 , N (Ωu,2, 0.459) and Ω̃u,3 ,
N (Ωu,3, 0.459). Thus, the verification for uncertain switched
system can be done via verifying if the new system is safe
with respect to the new unsafe regions. We can use SpaceEx
[32] to perform the verification for the certain system.

The verification result is illustrated in Fig. 3. However, the
safety of the original system cannot be guaranteed since the
computed reach set intersects with Ω̃u,3. Then, we let L = 5
which produces a smaller precision δ, and the system matrices
are A1

b⊤1
C1

 =

[ −1.611 0.427
0.170 −1.106

−2.981 −1.030

−0.970 −0.032
−0.032 −0.948

]
,

 A2

b⊤2
C2

 =

[ −0.909 −0.023
−0.359 −1.685

−1.980 −3.139

−0.970 −0.032
−0.032 −0.949

]

In comparison with Fig. 3, this smaller δ yields small-
er unsafe regions as Ω̃u,1 , N (Ωu,1, 0.409), Ω̃u,2 ,
N (Ωu,2, 0.409) and Ω̃u,3 , N (Ωu,3, 0.409). By the results in
Fig. 4, we can conclude the safety of the uncertain switched
system.

−1 0 1 2 3 4 5
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6

y
1

y 2

2.2 2.4 2.6

1.1

1.2

1.3

1.4

1.5 Original unsafety region
Unsafe region with L=1

Fig. 3. The safety verification via SpaceEX for the certain system derived
with (L = 1). The blue area is the reach set computed by SpaceEX, and the
yellow lines are the random state trajectories. The safe or unsafe property of
the original uncertain system cannot be concluded since the reach set of the
certain system intersects with the new unsafe region.
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Fig. 4. The safety verification via SpaceEX for the certain system derived
with (L = 5). The safety of the original uncertain system can be concluded
since the reach set of certain system has no intersection with the new unsafe
regions.

V. CONCLUSIONS

In this paper, the output reachable set estimation problem
for switched linear systems has been investigated. With the
aid of the common Lyapunov function and multiple Lyapunov
function approaches, the output reachable set can be over-
approximated by a set of bounding ellipsoids. Moreover, a
sufficient condition for the existence of an approximate bisim-
ulation of two switched linear systems is proposed, which can
be viewed as an output reachable set estimation for the system
combining the two bisimilar systems. Finally, by the result of
approximate bisimulation, the safety verification problem for
uncertain switched systems can be dealt with by verifying the
safety of its bisimilar system with exact parameters. In this
paper, Ai are required to be Hurwitz stable. By the techniques
used in [33], the result in this paper can be readily extended
to the case with some Ai are unstable. In addition, according
to Table I, the computational cost significantly increases as
the system order and number of modes grows, how to reduce
the computational complexity and make it applicable for high
dimensional systems with large amounts of subsystems will



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XX XXXX 8

be our future study.

REFERENCES

[1] R. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspec-
tives and results on the stability and stabilizability of hybrid systems,”
Proceedings of the IEEE, vol. 88, no. 7, pp. 1069–1082, 2000.

[2] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: a survey of recent results,” IEEE Trans. Autom. Control,
vol. 54, no. 2, pp. 308–322, 2009.

[3] D. Liberzon, Switching in Systems and Control. Springer Science &
Business Media, 2012.

[4] H. Yang, B. Jiang, and V. Cocquempot, Stabilization of Switched
Nonlinear Systems with Unstable Modes. Switzerland: Springer, 2014.

[5] J. C. Geromel and P. Colaneri, “Stability and stabilization of continuous-
time switched linear systems,” SIAM J. Control Optimiz., vol. 45, no. 5,
pp. 1915–1930, 2006.

[6] Z. Sun, S. S. Ge, and T. H. Lee, “Controllability and reachability criteria
for switched linear systems,” Automatica, vol. 38, no. 5, pp. 775–786,
2002.

[7] L. Zhang and P. Shi, “Stability, ℓ2-gain and asynchronous control of
discrete-time switched systems with average dwell time,” IEEE Trans.
Autom. Control, vol. 54, no. 9, pp. 2192–2199, 2009.

[8] L. Zhang, S. Zhuang, and P. Shi, “Non-weighted quasi-time-dependent
H∞ filtering for switched linear systems with persistent dwell-time,”
Automatica, vol. 54, pp. 201–209, 2015.

[9] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Disturbance attenua-
tion properties of time-controlled switched systems,” J. Franklin Inst.,
vol. 338, no. 7, pp. 765–779, 2001.

[10] E. Fridman, A. Pila, and U. Shaked, “Regional stabilization and H∞
control of time-delay systems with saturating actuators,” Int. J. Robust
Nonlin. Control, vol. 13, no. 9, pp. 885–907, 2003.

[11] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–
370, 1999.

[12] C. Durieu, E. Walter, and B. Polyak, “Multi-input multi-output ellip-
soidal state bounding,” J. Optim. Theory Appl., vol. 111, no. 2, pp. 273–
303, 2001.

[13] E. Fridman and U. Shaked, “On reachable sets for linear systems with
delay and bounded peak inputs,” Automatica, vol. 39, no. 11, pp. 2005–
2010, 2003.

[14] J.-H. Kim, “Improved ellipsoidal bound of reachable sets for time-
delayed linear systems with disturbances,” Automatica, vol. 44, no. 11,
pp. 2940–2943, 2008.

[15] Z. Feng and J. Lam, “An improved result on reachable set estimation
and synthesis of time-delay systems,” Applied Mathematics and Com-
putation, vol. 249, pp. 89–97, 2014.

[16] P. T. Nam and P. N. Pathirana, “Further result on reachable set bounding
for linear uncertain polytopic systems with interval time-varying delays,”
Automatica, vol. 47, no. 8, pp. 1838–1841, 2011.

[17] Z. Feng and J. Lam, “On reachable set estimation of singular systems,”
Automatica, vol. 52, pp. 146–153, 2015.

[18] Y. Chen, J. Lam, and B. Zhang, “Estimation and synthesis of reachable
set for switched linear systems,” Automatica, vol. 63, pp. 122–132, 2016.

[19] Y. Chen and J. Lam, “Estimation and synthesis of reachable set for
discrete-time periodic systems,” Optim. Control Appl. Methods, 2015.

[20] F. Amato, R. Ambrosino, C. Cosentino, and G. De Tommasi, “Input–
output finite time stabilization of linear systems,” Automatica, vol. 46,
no. 9, pp. 1558–1562, 2010.

[21] F. Amato, M. Ariola, and C. Cosentino, “Finite-time stability of linear
time-varying systems: analysis and controller design,” IEEE Trans.
Autom. Control, vol. 55, no. 4, pp. 1003–1008, 2010.

[22] A. Girard and G. J. Pappas, “Approximate bisimulation: A bridge
between computer science and control theory,” European Journal of
Control, vol. 17, no. 5, pp. 568–578, 2011.

[23] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10,
pp. 2508–2516, 2008.

[24] A. Girard, “Controller synthesis for safety and reachability via approx-
imate bisimulation,” Automatica, vol. 48, no. 5, pp. 947–953, 2012.

[25] Y.-Y. Cao, J. Lam, and Y.-X. Sun, “Static output feedback stabilization:
an ILMI approach,” Automatica, vol. 34, no. 12, pp. 1641–1645, 1998.

[26] Z. Shu and J. Lam, “An augmented system approach to static output-
feedback stabilization with H∞ performance for continuous-time
plants,” Int. J. Robust Nonlin. Control, vol. 19, no. 7, pp. 768–785,
2009.

[27] A. S. Morse, “Supervisory control of families of linear set-point con-
trollers part I. exact matching,” IEEE Trans. Autom. Control, vol. 41,
no. 10, pp. 1413–1431, 1996.

[28] L. Allerhand and U. Shaked, “Robust stability and stabilization of linear
switched systems with dwell time,” IEEE Trans. Autom. Control, vol. 56,
no. 2, pp. 381–386, 2011.

[29] C. Briat and A. Seuret, “A looped-functional approach for robust stability
analysis of linear impulsive systems,” Syst. Control Lett., vol. 61, no. 10,
pp. 980–988, 2012.

[30] W. Xiang and J. Xiao, “Stabilization of switched continuous-time
systems with all modes unstable via dwell time switching,” Automatica,
vol. 50, no. 3, pp. 940–945, 2014.

[31] W. Xiang, “Necessary and sufficient condition for stability of switched
uncertain linear systems under dwell-time constraint,” IEEE Trans.
Autom. Control, vol. 61, no. 11, pp. 3619–3624, 2016.

[32] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
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APPENDIX

Proof of Lemma 1: Define the following Lyapunov function
as V (t) =

∑
i∈M ξi(t)Vi(x(t)), where ξi(t), i ∈ M, is same

as in Theorem 2. First, we consider any t ∈ [tk, tk+1) ⊂ Ii,
∀i ∈ M. (6) implies

V̇ (t) ≤ −αV (t) + αu⊤(t)Ruu(t), t ∈ [tk, tk+1) (56)

Then, multiplying both sides of (56) with eα(t−tk) and then
integrating it over [tk, t), we have V (t) ≤ e−α(t−tk)V (t+k ) +∫ t

tk
e−α(t−s)u⊤(s)Ruu(s)ds. Due to u(t) ∈ E(Ru), ∀t ∈

R≥0, that is u⊤(t)Ruu(t) ≤ 1, ∀t ∈ R≥0, we have the
following result

V (t) ≤ e−α(t−tk)V (t+k ) +

∫ t

tk

e−α(t−s)ds

= e−α(t−tk)V (t+k ) + 1− e−α(t−tk)

(57)

and it can be rewritten to

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1), t ∈ [tk, tk+1) (58)

Next, we consider tk ∈ S . From (7), we can obtain that
V (t+k ) ≤ βV (t−k )+1−β, tk ∈ S , which can be equivalently
rewritten to

V (t+k )− 1 ≤ β(V (t−k )− 1), tk ∈ S (59)

Combining (58) and (59), the following derivation can be
obtained for ∀t ∈ R≥0

V (t)− 1 ≤ e−α(t−tk)(V (t+k )− 1) ≤ βe−α(t−tk)(V (t−k )− 1)

≤ · · · ≤ βNum(t−t0)e−α(t−t0)(V (t0)− 1)

where Num(t− t0) denotes the number of switchings during
[t0, t). Due to α > 0 and 0 < β ≤ 1, it means that

V (t)− 1 ≤ V (t0)− 1, ∀t ∈ R≥0 (60)

Furthermore, (8) implies that V (t0) ≤ x⊤
0 R0x0 ≤ 1, and (9)

together with (60) yield that y⊤(t)Ri,yy(t) ≤ V (t) ≤ 1 holds
when σ(t) = i ∈ M, t ∈ R≥0. For all possible i ∈ M, y(t)
thus satisfies y(t) ∈

∪
i∈M E(Ri,y), ∀t ∈ R≥0 and therefore,

Ry ⊆ R̃y by the definition of R̃y given in (1).


