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Abstract— In this work, the reachable set estimation and
verification problems for a class of piecewise linear systems
equipped with neural network controllers are addressed. The
neural network is considered to consist of Rectified Linear
Unit (ReLU) activation functions. A layer-by-layer approach
is developed for the output reachable set computation of
ReLU neural networks, which is formulated in the form of
a set of manipulations for a union of polytopes. Based on the
output reachable set for neural network controllers, the output
reachable set for a piecewise linear feedback control system can
be estimated iteratively for a given finite-time interval. With
the estimated output reachable set, the safety verification for
piecewise linear systems with neural network controllers can be
performed by checking the existence of intersections of unsafe
regions and output reach set. A numerical example is presented
to illustrate the effectiveness of our approach.

I. INTRODUCTION

Artificial neural networks have been widely used in ma-
chine learning systems, especially in control systems where
the plant models are complex or even unavailable [1]–[5].
Neural network based controllers have been demonstrated to
be effective at controlling complex systems. However, such
controllers are confined to systems which comply with the
lowest safety integrity, since the majority of neural networks
are viewed as black box lacking effective methods to predict
all outputs and assure safety specifications for closed-loop
systems. In a variety of applications to feedback control
systems, there are safety-oriented restrictions such that the
system states are not allowed to reach unsafe regions while
under the control of a neural network based feedback con-
troller. Neural networks can react in unexpected and incorrect
ways to even slight perturbations of their inputs [6], thus it
could result in unsafe closed-loop systems even while under
control of well-trained neural network controllers. Hence,
methods that are able to provide formal guarantees are in
a great demand for verifying specifications or properties of
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systems involving neural network controllers. Even the verifi-
cation of simple properties concerning neural networks have
been demonstrated to be NP-complete problems [7]. Few
results have been reported in the literature for verifying sys-
tems involving neural networks. In [8] Satisfiability Modulo
Theory (SMT) is utilized for the verification of feed-forward
multi-layer neural networks. In [9] an abstraction-refinement
approach is developed for computing output reachable set
of neural networks. In [7], a specific kind of activation
functions called Rectified Linear Unit (ReLU) is considered
for the verification of neural networks. Recently, Lyapunov
functions were utilized for reachable set estimation of neural
networks in [10], [11].

Piecewise linear systems have emerged as an important
subclass of hybrid systems and represent a very active area
of current research in the field of control systems [12]–
[17]. A piecewise linear system is composed of a family of
continuous or discrete time modes, described by differential
or difference equations, respectively, along with a switching
rule governing the activation of modes. The motivation for
studying piecewise linear systems comes from the fact that
piecewise linear systems can be effectively used to model
many practical systems that are inherently multi-model in the
sense that several dynamic subsystem models are required
to describe their behaviors. In this paper, we will study the
reachable set estimation and verification problems for a class
of piecewise linear systems with neural network controllers.
Since the neural network controller exists in the control loop,
it is essential to compute or estimate the output reachable set
of the neural network controller to facilitate the computation
of the reachable set of the entire closed-loop system. For
a class of ReLU neural networks, the output reachable set
computation is converted into a set of polytope operations.
Then, extensions to reachable set estimation for closed-
loop systems are made and moreover, the safety verification
is then reduced to check for empty intersections between
reachable set and unsafe regions.

The rest of this paper is organized as follows. The problem
formulation and preliminaries are given in Section II. The
main results of output reachable set estimations for ReLU
neural networks and discrete-time piecewise linear feedback
control systems with ReLU neural network controllers are
presented in Section III. In Section IV, a numerical example
is provided to illustrate the results. Conclusions are given in
Section V.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 American Control Conference.
Received September 24, 2017.



II. PRELIMINARIES AND PROBLEM FORMULATION

In the paper, a class of discrete-time piecewise linear
systems is considered in the following form

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) (1)

where x(k) ∈ Rnx is state vector and u(k) ∈ Rnu is the
control input. The switching signal σ is defined as σ : N→
{1, . . . , N}, where N is the number of subsystems in the
switched system. The switching instants are expressed by a
sequence S , {km}∞m=0, where k0 denotes the initial time
and km denotes the mth switching instant.

Due to the presence of switching signal σ, piecewise linear
system (1) has much more complex behaviors than those are
presented in linear systems. For the problem of controller
design, our aim is to find a feedback controller

u(k) = g(x(k)) (2)

where g : Rnx → Rnu is a static feedback controller. The
corresponding closed-loop system becomes

x(k + 1) = Aσ(k)x(k) +Bσ(k)g(x(k)). (3)

It is noted that controller (2) includes the common linear
feedback scheme g(x(k)) = Kx(k) and the mode-dependent
linear feedback controller g(x(k)) = Kσ(k)x(k), which
have be widely used in the literature. However, it still has
a number of challenges for controller design problems of
system (1), especially when the switching signal is not
available for the design process. For example, when the
switching signal σ is unavailable and a common feedback
controller has to be designed, the resulting controller is
usually designed to be overly conservative.

For general nonlinear systems which include system (1),
the neural network based design method is a promising
approach to resolve controller design problems for complex
systems. In this paper, we consider a class of feedforward
neural networks called the Multi-Layer Perceptron (MLP),
which consists of a number of interconnected neurons. The
action of a neuron depends on its activation function, which
is described as

yi = f
(∑n

j=1
ωijvj + θi

)
(4)

where vj is the jth input of the ith neuron, ωij is the weight
from the jth input to the ith neuron, θi is called the bias
of the ith neuron, yi is the output of the ith neuron, f(·) is
the activation function. The activation function is generally a
nonlinear function describing the reaction of ith neuron with
inputs vj , j = 1, . . . , n. Typical activation functions include
rectified linear unit, logistic, tanh, exponential linear unit,
linear functions.

An MLP has multiple layers, each layer `, 1 ≤ ` ≤ L,
has n[`] neurons. In particular, layer ` = 0 is used to denote
the input layer and n[0] stands for the number of inputs for
the neural network, and n[L] is the number of neurons in the
output layer. For a neuron i, 1 ≤ i ≤ n[`] in layer `, the

corresponding input vector is denoted by v[`] and the weight
matrix is

W [`] =
[
ω
[`]
1 , . . . , ω

[`]

n[`]

]>
where ω[`]

i is the weight vector. The bias vector for layer `
is

θ[`] =
[
θ
[`]
1 , . . . , θ

[`]

n[`]

]>
.

The output vector of layer ` can be expressed as

y[`] = f`(W
[`]v[`] + θ[`])

where f`(·) is the activation function for layer `.
In this work, we consider a ReLU activation function

expressed as:

f(v) = v+ = max(0, v). (5)

The output of a neuron is rewritten as

yi = max
(

0,
∑n

j=1
ωijvj + θi

)
(6)

and the corresponding output vector of layer ` becomes

y[`] = max(0,W [`]v[`] + θ[`]). (7)

For an MLP, the output of `−1 layer is the input of the `
layer, and the mapping from the input layer v[0] to the output
of output layer y[L] is the input-output relation of the MLP,
denoted by

y[L] = g(v[0]) (8)

where g(·) , fL ◦ fL−1 ◦ · · · ◦ f1(·).
For controller design problem, we can let input of MLP

v[0] = x(k) and output of MLP y[L] = u(k). That means,
given a feedback control system of the form (2) and a
control objective, a neural network can be trained to achieve
the control objective. There are a variety of results for
designing neural network based feedback controller g(x(k)).
Despite a neural network’s ability to approximate nonlinear
functions through the universality property, predicting the
output behaviors of MLPs given in (8) still poses a significant
challenge due to the nonlinearity and nonconvexity of MLPs.
An MLP is usually viewed as a black box to generate a
desirable output with respect to a given input. However, when
considering property verification which includes safety veri-
fication, it has been observed that even a well-trained neural
network can react in unexpected and incorrect manners to
slight perturbations of their inputs, which could result in
unsafe systems. Thus, the output reachable set computation
or estimation of an MLP, which encompasses all possible
values of outputs, is necessary to verify the safety property
of a neural network based feedback control system.

Given an initial set X0, the reachable set of system (3)
defined at time k and over an interval [0, k] is given by the
following definition.

Definition 1: Given a piecewise linear system (1) with a
neural network controller (2) and initial state x(0) belonging
to a set X0, the reachable set of closed-loop system (3) at
time k is defined as

Xk , {x(k) | x(k) satisfies (3) and x(0) ∈ X0} (9)
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and the reachable set over time interval [0, k] is defined by

X[0,k] =
⋃k

h=0
Xh (10)

where Xh, h = 0, 1, . . . , k, are defined in (9)
In this paper, two problems will be addressed for feedback

system (3) equipped with a neural network controller of the
form (2).

Problem 1: How does one compute the sets Xk and X[0,k]

given a piecewise linear system of the form (1) with a neural
network controller (2) and initial state x(0) belonging to set
X0?

The safety specification for a closed-loop system of the
form (3) is expressed by a set defined in the state space,
describing the safety requirement.

Definition 2: A safety specification S formalizes the
safety requirements for a closed-loop system of the form (3)
and is a predicate over the system state x of the closed-loop
system. The closed-loop system (3) is safe over the interval
[0, k] if and only if the following condition is satisfied:

X[0,k] ∩ ¬S = ∅ (11)

where ¬ is the symbol for logical negation.
The safety verification problem for closed-loop system (3)

is stated as follows.
Problem 2: How can the safety requirement in (11) be

verified given a piecewise linear system of the form (1) with
a neural network controller (2), initial state x(0) belonging
to a set X0 and a safety specification S?

To facilitate the developments in this paper, the following
assumption is made.

Assumption 1: Initial state set X0 is considered to be a
union of N0 polytopes, that is expressed as X0 =

⋃N0

s=1 Xs,0,
where Xs,0, s = 1, . . . , N0, are described by

Xs,0 , {x | Hs,0x ≤ bs,0, x ∈ Rnx} , s = 1, . . . , N0. (12)
In the following section, the main results on reachable set

estimation and verification for piecewise linear systems with
neural network controllers will be presented.

III. MAIN RESULTS

In this section, a layer-by-layer method is developed
for computing the output reachable set for a ReLU neural
network. We consider a single layer with ReLU neurons and
an indicator vector q = [q0, . . . , qn], qi ∈ {0, 1} is utilized,
in which the element qi is valuated as below:

qi =

{
0
∑n
j=1 ωijvj + θi ≤ 0

1
∑n
j=1 ωijvj + θi > 0

. (13)

There are 2n possible indicator vectors q in total, which
are indexed as q0 = [0, 0, . . . , 0], q1 = [0, 0, . . . , 1], . . .,
q2n−1 = [1, 1, . . . , 1]. In the sequel, all these vectors from q0
to q2n−1 are diagonalized as Q0 = diag(q0), Q1 = diag(q1),
. . ., Q2n−1 = diag(q2n−1).

Theorem 1: Given a single layer described by (7) and an
input set V [`] for the layer, the output set is

Y [`] = Ȳ [`] ∪ Ŷ [`] ∪

(⋃2n
[`]
−2

m=1
Y [`]
m

)
(14)

where Ȳ [`], Ŷ [`], Y [`]
m , are defined as below

Ȳ [`] =

{
{0}, V̄ [`] 6= ∅
∅, V̄ [`] = ∅ ,

V̄ [`] = {v |W [`]v + θ[`] ≤ 0, v ∈ V [`]};
Ŷ [`] = {y = W [`]v + θ[`] | v ∈ V̂ [`]},
V̂ [`] = {v |W [`]v + θ[`] > 0, v ∈ V [`]};
Y [`]
m = {y = W [`]v + θ[`] | v ∈ V̄ [`]

m ∩ V̂ [`]
m },

V̄ [`]
m = {v | (I −Qm)(W [`]v + θ[`]) ≤ 0, v ∈ V [`]},
V̂ [`]
m = {v | Qm(W [`]v + θ[`]) ≥ 0, v ∈ V [`]}.

Proof: For the inputs of the layer as v[`] ∈ V [`], we
have three cases listed below to completely characterize the
outputs of layer (7).

Case 1: All the elements in the outputs are non-positive,
which means

v[`] ∈ V̄ [`] = {v |W [`]v + θ[`] ≤ 0, v ∈ V [`]}. (15)

By the definition of ReLU, it directly yields the output set
for this case is

Ȳ [`] =

{
{0}, V̄ [`] 6= ∅
∅, V̄ [`] = ∅ . (16)

Case 2: All the elements are positive by the input in V [`],
that implies

v[`] ∈ V̂ [`] = {v |W [`]v + θ[`] > 0, v ∈ V [`]}. (17)

So, the output set is

Ŷ [`] = {y | y = W [`]v + θ[`], v ∈ V̂ [`]}. (18)

Case 3: Outputs have both negative and positive elements,
which correspond to indicator vectors qm, m = 1, . . . , 2n

[`]−
2. Note that, for each qm, m = 1, . . . , 2n

[`] − 2, the element
qi = 0 indicates yi = max(0,

∑n[`]

j=1 ωijvj + θi) = 0 due

to
∑n[`]

j=1 ωijvj + θi ≤ 0. With respect to each qm, m =

1, . . . , 2n
[`] − 2, we define set

V̄ [`]
m = {v |

∑n[`]

j=1
ω
[`]
ij vj + θ

[`]
i ≤ 0, v ∈ V [`]} (19)

in which i ∈ {i | qi = 0 in qm = [q1, . . . , qn[`]]}. In a
compact form, it can be expressed as

V̄ [`]
m = {v | (I −Qm)(W [`]v + θ[`]) ≤ 0, v ∈ V [`]}. (20)

Due to ReLU functions, when
∑n[`]

j=1 ωijvj + θi ≤ 0, it
will be set to 0, thus the output for v ∈ V̄m should be

Ȳ [`]
m = {y = Qm(W [`]v + θ[`]) | v ∈ V̄ [`]

m }. (21)

Again, due to ReLU functions, the final value should be
non-negative, that is y ≥ 0, thus additional constraint for v[`]

has to be added as

v[`] ∈ V̂ [`]
m = {v | Qm(W [`]v + θ[`]) ≥ 0, v ∈ V̄ [`]

m }. (22)

The resulting output set is

Y [`]
m = {y = W [`]v + θ[`] | v ∈ V̄ [`]

m ∩ V̂ [`]
m }. (23)
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The three cases establish that the output set generated from
input set V [`] is

Y [`] = Ȳ [`] ∪ Ŷ [`] ∪

(⋃2n
[`]
−2

m=1
Y [`]
m

)
. (24)

The proof is complete.
From Theorem 1, the following corollary can be obtained

if the input set for the layer is a union of polytopes.
Corollary 1: Consider a signal layer (7), if the input set

V [`] is V [`] =
⋃N`

s=1 V
[`]
s , where V [`]

s , s ∈ {1, . . . , N`}, are
polytopes described as

V [`]
s , {v | H [`]

s v ≤ b[`]s , v ∈ Rn
[`]

} (25)

then the output set Y [`] is also a union of polytopes.
Proof: By Theorem 1, Ȳ [`], Ŷ [`], Y [`]

m , are polytopes if
V [`] is a polytope. Thus, for V [`]

s in (25), the corresponding
output set, Y [`]

s , is a union of polytopes. Moreover, for V [`] =⋃N`

s=1 V
[`]
s , the output set is

Y [`] =
⋃N`

s=1
Y [`]
s (26)

which is a union of polytopes.
By Corollary 1, if input set V [`] is given as (25), the output

can be expressed by a union of polytopes by Theorem 1. The
set Ȳ [`]

s , Ŷ [`]
s , Y [`]

s,m can be expressed as follows:

Ȳ [`]
s =

{
{0}, V̄ [`]

s 6= ∅
∅, V̄ [`]

s = ∅
, (27)

V̄ [`]
s =

{
v |
[
H

[`]
s

W [`]

]
v ≤

[
b
[`]
s

θ[`]

]}
; (28)

Ŷ [`]
s =

{
y = W [`]v + θ[`] | v ∈ V̂ [`]

s

}
, (29)

V̂ [`]
s =

{
v | H [`]

s v ≤ b[`]s ∧W [`]v > −θ[`]
}

; (30)

Y [`]
s,m =

{
y = W [`]v + θ[`] | v ∈ V [`]

m,s

}
, (31)

V [`]
m,s =

{
v | H [`]

m,sv ≤ b[`]m,s
}
, (32)

H [`]
m,s =

 H
[`]
s

(I −Qm)W [`]

−QmW [`]

 , b[`]m,s =

 b
[`]
s

(Qm − I)θ[`]

Qmθ
[`]

 .
(33)

The algorithm for generating the output set of layer ` is
summarized in Algorithm 1.

As for linear activation functions, which are commonly
used in the output layer L, the output reach set can be
computed in a similar manner to the set Ŷ [`]

s for ReLU, this
time omitting the constraint y > 0.

Corollary 2: Consider a linear layer y[`] = W [`]v[`] + θ[`]

with input set V [`], the output reach set Y [`] of linear layer
` is

Y [`] =
{
y = W [`]v + θ[`] | v ∈ V [`]

}
. (34)

Moreover, if the input set V [`] is a union of polytopes, the
output set Y [`] is still a union of polytopes.

Algorithm 1 Output Reach Set Computation for ReLU
Layers

Input: Neural network weight matrix W [`] and bias θ[`],
input set V [`] =

⋃N`

s=1 V
[`]
s with V [`]

s , {v | H [`]
s v ≤

b
[`]
s }.

Output: Output reach set Y [`].
1: function LAYEROUTPUT(W [`], θ[`], V [`])
2: for s = 1 : 1 : N` do
3: Compute V̄ [`]

s by (28)
4: if V̄ [`]

s 6= ∅ then
5: Ȳ [`]

s ← {0}
6: else
7: Ȳ [`]

s ← ∅
8: end if
9: Compute Ŷ [`]

s by (29), (30)
10: for h = 1 : 1 : 2n − 2 do
11: Compute Ys,m by (31)–(33)
12: end for
13: Y [`]

s ← Ȳ [`]
s ∪ Ŷ [`]

s ∪
(⋃2n

[`]
−2

m=1 Y [`]
s,m

)
14: end for
15: return Y [`] ←

⋃N`

s=1 Y
[`]
s

16: end function

Proof: Since linear layer has y[`] = W [`]v[`] + θ[`],
the output set Y [`] is expressed by (34). Furthermore, by the
similar proof line in Corollary 1, Y [`] is a union of ploytopes
if input set V [`] is a union of polytopes.

For a multi-layer neural network, it can be observed that
v[`] = y[`−1], ` = 1, . . . , L, as well as V [`] = Y [`−1], ` =
1, . . . , L. Hence, the neural network (8) can be expressed
recursively as

y[`] = max(0,W [`]y[`−1] + θ[`]), ` = 1, . . . , L (35)

where y[0] = v[0] is the input of the neural network and y[L]

is the output of the neural network, respectively. Accordingly,
the input set and output are denoted by V [0] and Y [L].

Proposition 1: Given an MLP with L layers with corre-
sponding ReLU or linear activation functions for each layer
l, 1 ≤ L, and given the input set V [0] as described by (25) ,
the output reach set Y [L] can be computed recursively using
(27)–(34) and Algorithm 1.

Proof: It can be derived directly using V [`] = Y [`−1].
The proof is complete.

The routine for computing the output reach set produced
by ReLU neural networks is outlined in Algorithm 2.

For piecewise linear systems as in (1), the reachable set
Xk can be computed by the following proposition.

Proposition 2: Consider piecewise linear system (1) with
initial state set X0 in (12), the reachable set Xk can be
iteratively computed as

Xk+1 = {x | x = Aσ(k)x(k) +Bσ(k)g(x(k)),

g(x(k)) ∈ Gk, x(k) ∈ Xk} (36)

where Gk = networkoutput(W [`], θ[`],Xk) is the output of
Algorithm 2 and, the reachable set over time interval [0, k]
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Algorithm 2 Output Reach Set Computation for ReLU
Networks
Input: Neural network weight matrix W [`] and bias θ[`],

` = 1, . . . , L, input set V [0] =
⋃N0

s=1 V
[0]
s with V [0]

s ,
{v | H [0]

s v ≤ b[0]s }.
Output: Output reach set Y [L].

1: function NETWORKOUTPUT(W [`], θ[`], V [0])
2: V [1] ← V [0]

3: for ` = 1 : 1 : L do
4: if Layer ` is a ReLU Layer then
5: Y [`] ← layerouput(W [`], θ[`],V [`])
6: else if Layer ` is a linear layer then
7: Compute Y [`] by (34)
8: end if
9: if ` < L then

10: V [`+1] ← Y [`]

11: else if ` = L then
12: return Y [L]

13: end if
14: end for
15: end function

Algorithm 3 Reachable Set Computation for piecewise
linear systems with neural network controller

Input: Neural network weight matrix W [`] and bias θ[`],
` = 1, . . . , L, system matrices Ai, Bi, i = 1, . . . , N ,
initial state set X0 =

⋃N0

s=1 Xs,0 with Xs,0 ,
{x | Hs,0x ≤ bs,0, x ∈ Rn}.

Output: Reachable set Xk.
1: function SYSTEMREACH(W [`], θ[`], Ai, Bi, X0)
2: for h = 0 : 1 : k − 1 do
3: Gh ← networkoutput(W [`], θ[`],Xh)
4: Compute Xh+1 by (36)
5: X[0,h+1] ← Xh+1 ∪ X[0,h]

6: end for
7: return Xk and X[0,k]

8: end function

is
X[0,k] =

⋃k

h=0
Xh. (37)

Proof: By x(k + 1) = Aσ(k)x(k) +Bσ(k)g(x(k)) and
Gk = networkoutput(W [`], θ[`],Xk) in Proposition 1, it can
obtained Xk+1 by (36). Then, according to Definition 1,
X[0,k] should be (37).

The algorithm for reachable set computation of a closed-
loop system is summarized in Algorithm 3.

With the computed reachable set Xk, the following result
can be obtained for safety verification.

Proposition 3: Consider switched system (1) with initial
set (12) and a given safety specification S, closed-loop
system (3) is safe for interval [0, k] if X[0,k] ∩ ¬S = ∅,
where X[0,k] is obtained by (37) in Proposition 2.

Proof: It is an immediate result by Definition 1 and
Proposition 2. The proof is complete.

The output of Algorithm 3 is an exact reachable set

of the closed-loop system (3). However, the number of
polytopes increases rapidly as time steps grow since the
output of a neural network controller is a union of a
number of polytopes, which makes the computational cost
become intractable for long intervals. To avoid the highly
computational cost associated with the increasing number of
polytopes for Xk, we use convex hull of Xk, that is using
X̄k = conv(Xk) instead of Xk in Algorithm 3 to ensure
that the output at each k is only one polytope. However,
the cost of this simplification is that the output is an over-
approximation of the reachable set.

Finally, the safety property can be verified based on the
over-approximation X̄[0,k] as follows.

Corollary 3: Consider a switched system of the form (1)
with initial set as in (12) and a given safety specification S,
the closed-loop system given in (3) is safe for interval [0, k]
if X̄[0,k] ∩ ¬S = ∅, where X̄[0,k] =

⋃k
h=0 conv(Xh).

Proof: Since Xh ⊆ conv(Xh), we have reachable set
X[0,k] =

⋃k
h=0(Xh) ⊆

⋃k
h=0 conv(Xh) = X̄[0,k]. Thus, it is

sufficient to say X[0,k] ∩ ¬S = ∅, if X̄[0,k] ∩ ¬S = ∅.

IV. NUMERICAL EXAMPLE

To illustrate the approach presented in previous sections,
a discrete-time switched linear system with randomly gener-
ated system matrices are given as below:

A1 =

[
−1.0609 −1.0645
0.6600 −0.6178

]
, B1 =

[
−0.9759 0.3688
0.5874 2.5345

]
A2 =

[
−0.5487 −0.0196
0.3390 1.2870

]
, B2 =

[
0.5573 1.0926
−0.6622 0.9284

]
.

The switching is assumed to be a periodic one defined as

σ(k + 1) =

{
1 σ(k) = 2
2 σ(k) = 1

. (38)

Then, we let the input u(k) be generated from a 2-layer
ReLU neural network g(x(k)) with input x(k). The weight
matrices and bias vectors are also randomly selected as

W [1] =


−0.4949 −0.4273
−0.6112 −0.5277
−0.4287 −0.5161
0.0585 −0.3319

 , θ[1] =


−0.1971
−0.2435
0.9452
0.3945


W [2] =

[
0.5891 −0.4770 0.0849 0.2686
0.3210 −0.2599 0.1594 −0.0423

]
θ[2] =

[
−0.1862
−0.1339

]
.

The initial set is given by X0 = {x | ‖x‖∞ ≤ 1, x ∈ R2}.
The estimated reachable sets based on Corollary 3, by which
convex hull is used, for interval [0, 5] and [0, 10] are shown
in Figure1 and Figure 2, which are depicted in green. We
also discretize the initial set X0 by step 0.1 and generate 400
trajectories, which are all included in the estimated reachable
set.

With the output reach sets X[0,5] and X[0,10] in Figure 1
and Figure 2, the safety property can be easily verified by
inspecting the figures for non-empty intersections between
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Fig. 1. Estimated reachable set X[0,5] is the green area. Blue markers *
are 400 state trajectories from initial set X0. Red area is the unsafe region
¬S. There is no intersection between X[0,5] and ¬S, thus the closed-loop
system is safe in [0, 5].

Fig. 2. Green area is the estimated reachable set X[0,10], blue * are 400
state trajectories and red area is the unsafe region ¬S. The intersection
between X[0,10] and ¬S is not empty, thus the safety property of closed-
loop system is uncertain for [0, 10], even though no simulated state
trajectory enters the unsafe region.

the over approximation of the reachable set and an unsafe
region. For example, considering the unsafe region described
by ¬S = {x | ‖x− xc‖∞ ≤ 1, xc = [4, 4]>} which is
depicted in red in Figure 1 and Figure 2, it is easy to see
that the closed-loop system is safe in interval [0, 5] since
there is an empty intersection between reachable set X[0,5]

and unsafe set ¬S, However, the safety property of closed
loop system is uncertain over the time interval [0, 10] since
X[0,10] ∩ ¬S 6= ∅.

V. CONCLUSIONS

The reachable set estimation problem for a class of
discrete-time piecewise linear systems with neural network
feedback controllers has been studied in this paper. First,

a layer-by-layer computation method is proposed for com-
puting neural networks consisting of ReLU neurons. The
computation process is formulated as a set of polytope
operations. Based on the reachable set computation for ReLU
neural networks, an algorithm is proposed for reachable set
estimation for piecewise linear systems with ReLU neural
networks in a finite-time interval. Furthermore, the safety
property of the closed-loop system can be verified by check-
ing for a nonempty intersections between the estimated out-
put reachable set and unsafe regions. A numerical example is
provided to show the effectiveness of the proposed approach.
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