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Robust Exponential Stability and Disturbance
Attenuation for Discrete-Time Switched Systems

under Arbitrary Switching
Weiming Xiang, Hoang-Dung Tran and Taylor T. Johnson

Abstract—In this note, the globally exponential stability of
discrete-time switched systems under arbitrary switching is
investigated. First, for discrete-time switched nonlinear systems,
the globally exponential stability is found to be equivalent to
the existence of an M -step sequence with sufficient length and
a family of Lyapunov functions, and then a stability criterion
is proposed for the nominal linear case in the framework of
quadratic Lyapunov function. In order to extend the stability
criterion to handle uncertainties, an equivalent condition which
has a promising feature that is convex in system matrices is
derived, leading to a robust stability criterion for uncertain
discrete-time switched linear systems. Moreover, also taking
advantage of the convex feature, the disturbance attenuation
performance in the sense of ℓ2-gain is studied. Several numerical
examples are provided to illustrate our approach.

Index Terms—Arbitrary switching, ℓ2-gain, stability, uncer-
tainty, switched system

I. INTRODUCTION

A switched system is composed of a family of contin-
uous or discrete-time subsystems, described by differential
or difference equations, respectively, along with a switching
rule governing the switching between the subsystems. The
motivation for studying such switched systems comes from
the fact that switched systems can be efficiently used to model
many practical systems that are inherently multi-modal, thus
several dynamical subsystem models are required to describe
their behaviors. For example, several real-world cyber-physical
systems and industrial processes exhibit switching and hybrid
nature intrinsically. Among the large variety of problems
studied in theory and encountered in practice, stability anal-
ysis of switched systems is a core problem, which attracts
considerable research attention in the last decade [1]–[5]. One
can study the stability of switched systems with the help
of the given the switching rule described by a prescribed
state space partitioning [6]–[8] or some known constraints on
switching sequence such as dwell time [9]–[13] or average
dwell time [14]–[16] restrictions. However, in a number of
practical switched systems, the switching sequence is not
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known a prior and stability property has to be examined under
arbitrary switching.

The globally exponential stability (GES) of discrete-time
switched systems under arbitrary switching is of interest in
this paper. In some previous studies, the Lyapunov function
approach is a powerful tool for stability analysis of switched
systems. As to arbitrary switching, the common Lyapunov
function is able to deal with both continuous-time and discrete-
time dynamics, e.g., [17]–[19]. Particularly for discrete-time
case, an improved result called switched Lyapunov function
is developed to significantly reduce the conservativeness in
stability analysis [20]. The main aim in this paper is to propose
a new Lyapunov function based approach to further reduce the
conservatism in stability analysis under arbitrary switching. In
this paper, a new stability criterion with less conservativeness
over switched Lyapunov function approach will be developed
by introducing the conception of M -step sequence listing
all possible combinations of subsystems in M steps. First,
a general necessary and sufficient condition ensuring the
GES for discrete-time switched nonlinear systems is derived.
Then, a linear matrix inequality (LMI) based condition is
proposed for the case with nominal linear subsystems, which
is able to recover the switched Lyapunov function approach by
particularly letting M = 1 and thus has less conservativeness.
However, due to the non-convexity in the system matrices in
the LMI conditions, the stability criterion for the nominal case
is difficult to be extended to robust stability analysis in the
presence of uncertainties, so an alternative equivalent stability
criterion expressed by a set of convex condition in system
matrices is developed for the sake of extension to robust
stability analysis and consequently, a robust stability criterion
is derived. Also in virtue of convexity in system matrices,
the disturbance attenuation performance in the sense of ℓ2-
gain can be analyzed. Finally, several numerical examples
are given in order to emphasize the less conservativeness and
effectiveness of the approach.

Notations: N represents the set of natural numbers, R
denotes the field of real numbers, R+ is the set of nonnegative
real numbers, and Rn stands for the vector space of all n-tuples
of real numbers, Rn×n is the space of n×n matrices with real
entries. ∥·∥ stands for Euclidean norm. The notation A ≻ 0
means A is real symmetric and positive definite. A ≻ B means
that A−B ≻ 0. A⊤ denotes the transpose of A. In addition,
in symmetric block matrices, we use * as an ellipsis for the
terms that are induced by symmetry. For two integers k1 and
k2, k1 ≤ k2, we define I[k1, k2] , {k1, k1 + 1, . . . , k2}.
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II. PRELIMINARIES

In this paper, we consider a discrete-time switched system
in the following form

x(t+ 1) = fσ(t)(x(t))

x(t0) = x0

(1)

where x(t), x0 ∈ Rn are the system state vector and initial
state, respectively. The switching signal σ is defined as σ :
N → I[1, N ], where N is the number of subsystems involved
in the switched system. In this paper, no specific restriction is
imposed on switching signal σ, namely the arbitrary switching
law is considered in the rest of paper. fi : Rn → Rn, i ∈
I[1, N ], are assumed to be fi(0) = 0 and satisfy the globally
Lipschitz condition at x = 0, i.e.,

∥fi(x)∥ ≤ γi ∥x∥ , ∀x ∈ Rn, ∀i ∈ I[1, N ] (2)

where γi > 0.
The definition of globally exponential stability (GES) for

system (1) is given below.
Definition 1: [21] The equilibrium x = 0 of system (1) is

said to be globally exponential stable (GES) with a decay rate
µ > 0 if ∥x(t)∥ < ce−µ(t−t0) ∥x(t0)∥ holds for any initial
condition x(t0) ∈ Rn, any t ∈ N and a constant c > 0.

Based on a search of a single common quadratic Lyapunov
function, the GES can be guaranteed but the results often yield
overly conservativeness. As a great improvement in discrete-
time domain, the switched Lyapunov function approach which
searches for a collection of multiple Lyapunov functions
is proposed in [20] to reduce the conservativeness. In this
paper, the main aim is to further reduce the conservatism
in Lyapunov function based approach for GES analysis of
discrete-time switched systems over previous methods. First,
we introduce the conception of the M -step sequence, which
plays a fundamental role in this paper. The M -step sequence
is defined as follows.

Definition 2: For a switched system consisting N subsys-
tem, and given a time window with M -step length, an M -step
sequence is a combination of subsystems in M steps. There are
NM combinations of subsystems in M steps, and these NM

combinations are indexed by I[1, NM ]. For the ith sequence
of combination in I[1, NM ], it is expressed by

SM
i , {i1, i2, . . . , iM}, i1, . . . , iM ∈ I[1, N ], i ∈ I[1, NM ]

By the M -step sequence, a new M -step switched system
consisting of NM subsystems can be constructed as follows:

x̂(t+ 1) = Fσ̂(t)(x̂(t))

x̂(t0) = x0

(3)

where Fi , fiM ◦· · ·◦fi2◦fi1 , i ∈ I[1, NM ], and σ̂(t) denotes
the switching among NM combinations of subsystems, which
is also an arbitrary switching signal. Looking into system (1)
and (3), since the NM sequences SM

i , i ∈ I[1, NM ], contain
all possible sequences in M steps operation of system (1),
x̂(t) actually characterizes all possible evolutions of system
(1) state x(t) at every M step, i.e.,

x̂(t) = x(tM), t ∈ N (4)

Hence, together with the Lipschitz condition (2), the fol-
lowing result can be obtained.

Lemma 1: Switched system (1) is GES if and only if
switched system (3) is GES.

Proof: If system (1) is GES, it implies that ∥x(t)∥ <
ce−µ(t−t0) ∥x(t0)∥, ∀t ∈ N. Obviously, given any M ∈
N, it holds for any x(tM), t ∈ N, namely, ∥x̂(t)∥ <
ce−µ(t−t0) ∥x̂(t0)∥, ∀t̂ ∈ N, thus the GES of system (3) can
be guaranteed.

On the other hand, if system (3) is GES, which can yield
∥x̂(t)∥ < ce−µ(t−t0) ∥x̂(t0)∥, ∀t ∈ N. In addition, due to the
Lipschitz condition (2), and let γ = maxi∈I[1,M ]

∏
γi, we

have ∥x(t)∥ ≤ γ ∥x(tM)∥, t ∈ [tM + 1, (t + 1)M ]. Thus,
due to x̂(t0) = x(t0) and x(tM) = x̂(t), it arrives ∥x(t)∥ ≤
γce−µ(t−t0) ∥x(t0)∥, and GES of system (1) can be ensured.
The proof is complete.

In particular, when the switched linear system is taken into
account, system (1) has the following linear form

x(t+ 1) = Aσ(t)x(t)

x(t0) = x0

(5)

where Ai ∈ Rn×n, i ∈ I[1, N ]. The M -step switched linear
system can be derived to

x̂(t+ 1) = Aσ̂(t)x̂(t)

x̂(t0) = x0

(6)

where Ai ,
∏M−1

m=0 AiM−m , AiM · · ·Ai2Ai1 , i ∈ I[1, NM ].
In the next section, the stability of switched system (1) will

be first analyzed based on Lemma 1 of stability equivalency
between system (1) and system (3), and then we will specifi-
cally focus on the stability for switched linear system (5).

III. EXPONENTIAL STABILITY ANALYSIS FOR NOMINAL
SWITCHED SYSTEM

In this section, the M -step sequence conception will be
employed to derive a new less conservative stability criteria for
switched system (1). First, a general necessary and sufficient
condition is proposed based on an M -step sequence and its
corresponding Lyapunov functions.

Theorem 1: Switched system (1) is GES if and only if there
exist an M ∈ N, a family of functions Vi : Rn → R+, i ∈
I[1, NM ], scalars 0 < λ1 ≤ λ2, λ3 > 0 such that

λ1 ∥x∥ ≤ Vi(x) ≤ λ2 ∥x∥ , ∀x ∈ Rn, i ∈ I[1, NM ] (7)

∆Vi,j(x) < −λ3 ∥x∥ , ∀x ∈ Rn, ∀i, j ∈ I[1, NM ] (8)

where ∆Vi,j(x) , Vj(Fi(x))− Vi(x).
Proof: Sufficiency: Consider a Lyapunov function for

system (3) in the following form

V (x̂(t)) =
∑NM

i=1
θi(t)Vi(x̂(t))

where θi : N → {0, 1} and
∑NM

i=1 θi(t) = 1 is the indication
function indicating the activated subsystem of system (3).

By (8), it implies that

∆V (x̂(t)) < −λ3

λ2
V (x̂(t)) ⇔ V (x̂(t+1)) < (1− λ3

λ2
)V (x̂(t))
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Applying above result yields that

V (x̂(t)) < e(t−t0) ln(1−λ3
λ2

)V (x̂(t0))

which leads to

∥x̂(t)∥ < ce−µ(t−t0) ∥x̂(t0)∥

where c = λ2

λ1
> 0, µ = − ln(1 − λ3

λ2
) > 0. Thus, GES

of system (3) can be established, and therefore system (1) is
GES by Lemma 1.

Necessity: Consider any arbitrarily chosen Vi(x), i ∈
I[1, NM ], satisfying (7), where M is set to be any number
satisfying M > ln(cλ2/λ1)

µ . If system (1) is GES, we can find
the following result

Vj(x(t+M))− Vi(x(t)) < (λ2ce
−µM − λ1) ∥x(t)∥

= −λ3 ∥x(t)∥

holds for any x(t) ∈ Rn, and λ3 = λ1 − λ2ce
−µM > 0.

Furthermore, due to x(t + M) ∈ {x(t + M) | x(t + M) =
Fi(x(t)), i ∈ I[1, NM ]}, we have

Vj(Fi(x(t)))− Vi(x(t)) < −λ3 ∥x(t)∥ , ∀i, j ∈ I[1, NM ]

which shows (8) holds. The proof is complete.
Remark 1: Theorem 1 proposes a general nonconservative

condition for GES of switched system (1). The GES of
switched system (1) equals to the existence of an M -step
sequence with sufficient length and a collection of Lyapunov
functions. Especially, in the proof, it is shown that the non-
conservativeness can be achieved provided by a sufficiently
large M , which essentially can be quantitatively estimated by
M > ln(cλ2/λ1)

µ . It is interesting to see that, when M = 1, con-
ditions (7), (8) are reduced to the classical switched Lyapunov
function condition (Theorem 1, [20]). Therefore, it can be
concluded that, by introducing the M -step sequence concept,
(7), (8) with M ≥ 2 can further reduce conservativeness of
stability analysis result.

However, same like other Lyapunov function based ap-
proaches, how to construct appropriate Lyapunov functions
is the main challenge for applying Theorem 1. Thus, we
particularly consider the linear case of Theorem 1, and the
following result can be derived for switched linear system (5).

Theorem 2: For switched linear system (5) and given an
M ∈ N, the following statements are equivalent:

(a) There exist a family of Lyapunov functions Vi(x) =√
x⊤Pix, where Pi ≻ 0, i ∈ I[1, NM ], satisfying (7)

and (8) proving GES of system (1).
(b) There exist NM symmetric matrices Pi ≻ 0, i ∈

I[1, NM ] such that the following inequalities hold

A ⊤
i PjAi − Pi ≺ 0, ∀i, j ∈ I[1, NM ] (9)

The family of Lyapunov functions then are given by

Vi(x) =
√
x⊤Pix, i ∈ I[1, NM ] (10)

Proof: (a) ⇒ (b): Assume there exist a family of
Lyapunov functions Vi(x) =

√
x⊤Pix, where Pi ≻ 0,

i ∈ I[1, NM ] satisfying (7) and (8), it is obvious to see that

∆Vi,j(x) =
x⊤(A ⊤

i PjAi − Pi)x

Vj(A ⊤
i x) + Vi(x)

< 0, i, j ∈ I[1, NM ]

holds for any x ∈ Rn. Thus, it directly leads to A ⊤
i PjAi −

Pi ≺ 0, i.e., (9) holds.
(b) ⇒ (a): If (10) holds and choose Vi(x) =

√
x⊤Pix, i ∈

I[1, NM ], the λ1 and λ2 can be chosen as λ1 =
√
λmin(Pi) >

0 and λ2 =
√
λmax(Pi) > 0, then we have

λ1 ∥x∥ ≤ Vi(x) ≤ λ2 ∥x∥ , ∀x ∈ Rn, i ∈ I[1, NM ]

Thus, (7) is established.
Then, since (9) holds, there exists an ϵ > 0 such that

A ⊤
i PjAi − Pi ≺ −ϵI, i, j ∈ I[1, NM ] (11)

which yields that

x⊤(A ⊤
i PjAi − Pi)x < −ϵ ∥x∥2 , ∀x ∈ Rn (12)

By the definition of Vi(x) according to (10), we have

∆Vi,j(x) =
x⊤(A ⊤

i PjAi − Pi)x√
x⊤A ⊤

i PjAix+
√
x⊤Pix

(13)

Then, let ρ = λmax(A ⊤
i PjAi) ≥ 0 (due to Pi ≻ 0, ∀i ∈

I[1, NM ]), the following inequality can be obtained

∆Vi,j(x) <
−ϵ ∥x∥2

√
ρ ∥x∥+

√
λ2 ∥x∥

, ∀i, j ∈ I[1, NM ] (14)

Therefore, ∆Vi,j(x) < −λ3 ∥x∥ holds, namely (8) can
be established by letting λ3 = ϵ√

ρ+
√
λ2

> 0. The proof is
complete.

Remark 2: Theorem 2 can be viewed as an improved result
over switched Lyapunov function approach for the linear case
(Theorem 2, [20]), because the result in [20] is a special case of
Theorem 2 with M = 1. By Theorem 1 indicating the choice
of a larger M leading to a less conservative result, Theorem 2
with M ≥ 2 is able to yield less conservativeness in stability
analysis, which can be shown by a numerical example later.

IV. ROBUST STABILITY ANALYSIS FOR UNCERTAIN
SWITCHED SYSTEM

In this section, the matrices of system (5) are considered to
have time-varying uncertainties, which are supposed to belong
to the following polytopes

Ai ∈ Ai , co{A[1]
i , . . . , A

[L]
i , } (15)

where co{·} is the convex-hull operator and L ∈ N is the
number of vertices of polytope.

However, if M ≥ 2, the result in Theorem 2 cannot be
directly generalized to systems with uncertainties described
by (15), due to the presence of intricate multiplication of Ai,
i.e., Ai =

∏M−1
m=0 AiM−m , in condition (9). Thus, we need to

turn (9) into a convenient form which can separate Ai from
Ai for the purpose of robust stability analysis. Inspired by
the technique used in [22]–[24] for dwell time switching, an
equivalent condition of Theorem 2 for arbitrary switching is
proposed in the following.

Theorem 3: Consider switched linear system (5), there exist
NM symmetric matrices Pi ≻ 0, i ∈ I[1, NM ] such that (9)
holds if and only if there exist MNM symmetric matrices
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Pi,m ≻ 0, m ∈ I[0,M ], i ∈ I[1, NM ] such that the following
inequalities hold for ∀i, j ∈ I[1, NM ], ∀m ∈ I[1,M ],

A⊤
imPi,mAim − Pi,m−1 ≺ 0 (16)

Pi,0 − Pj,M ≺ 0 (17)

then switched linear system (5) is GES.
Proof: Before proving (9) ⇔ (16), (17), we first propose

an alternative equivalent condition for (9).
Since det(A− sI) is a polynomial having a finite number

of zeros, so for |s| ≠ 0 small enough, A − sI is invertible.
Thus, (9) holds if and only if

Pj−(Ai−sI)−⊤Pi(Ai−sI)−1 ≺ 0, ∀i, j ∈ I[1, NM ] (18)

holds with a sufficiently small |s| ̸= 0.
If there exist Pi, i ∈ I[1, NM ] such that (9) holds, we can

let P̃i = (Ai − sI)−⊤Pi(Ai − sI)−1 ≻ 0 with a sufficiently
small |s| ̸= 0. Then, substituting Pi = (Ai − sI)P̃i(Ai − sI)
into (18) and swapping i and j imply

(Ai − sI)⊤P̃i(Ai − sI)− P̃j ≺ 0, ∀i, j ∈ I[1, NM ]

Again because |s| ̸= 0 could be arbitrarily small, (9) equals
to

A ⊤
i P̃iAi − P̃j ≺ 0, ∀i, j ∈ I[1, NM ] (19)

where P̃i ≻ 0, i ∈ I[1, NM ].
Also, it can be said that there exists an ϵ > 0 such that

A ⊤
i P̃iAi − P̃j ≺ −ϵI, ∀i, j ∈ I[1, NM ] (20)

In the following, based on (9) ⇔ (19), we are going to
prove (9) ⇔ (16), (17) by proving (19) ⇔ (16), (17).

(19) ⇒ (16), (17): Given any Pi,M ≻ 0, i ∈ I[1, NM ], and
any Qi,m ≻ 0, m ∈ I[1,M ], i ∈ I[1, NM ], we can define
Pi,m in the form of

Pi,m =

(
M−1−m∏

h=0

AiM−h

)⊤

Pi,M

(
M−1−m∏

h=0

AiM−h

)
+Wi,m

(21)
where

Wi,m ,
M−1−m∑

s=1

(
M−1−m∏

h=s

AiM−h

)⊤

Qi,M−s×(
M−1−m∏

h=s

AiM−h

)
+Qi,m

Obviously, we have Pi,m ≻ 0, m ∈ I[1,M ], i ∈ I[1, NM ],
and Pi,m satisfies

A⊤
imPi,mAim − Pi,m−1 = −Qi,m−1

Thus, (16) holds due to Qi,m ≻ 0, m ∈ I[1,M ], i ∈
I[1, NM ].

Then, letting m = 0 in (21), it arrives(
M−1∏
h=0

AiM−h

)⊤

Pi,M

(
M−1∏
h=0

AiM−h

)
= Pi,0 −Wi,0 (22)

Since Pi,M , i ∈ I[1, NM ], could be any positive definite
matrices, we can choose Pi,M = P̃i, i ∈ I[1, NM ], which

TABLE I
COMPUTATIONAL COMPLEXITY OF THEOREMS 2 AND 3

Number of variables Size of LMIs

Theorem 2 n(n+1)NM

2
nN2M

Theorem 3 n(n+1)MNM

2
n(N2M +MNM )

satisfy (20). Then, using the fact of
∏M−1

h=0 AiM−h
= Ai and

substituting (22) into (20), the following result can be obtained

Pi,0 − Pj,M ≺ −ϵI +Wi,0 (23)

Since ϵ > 0 is fixed and Qi,m ≻ 0, m ∈ I[1,M ], i ∈
I[1, NM ] can be arbitrarily chosen, Qi,m can be adjusted to
be sufficiently small to attain Pi,0−Pj,M ≺ 0, i.e., (17) holds.

(16), (17) ⇒ (19): We consider Θi,m = A⊤
im
Pi,mAim −

Pi,m−1, and if (16) holds, it yields Θi,m ≺ 0 and

M∑
m=2

(
m−1∏
h=1

Aim−h

)⊤

Θi,m

m−1∏
h=1

Aim−h
+Θi,1

=

(
M−1∏
h=0

Ai,M−h

)⊤

Pi,M

M−1∏
h=0

Ai,M−h − Pi,0

=A ⊤
i Pi,MAi − Pi,0 ≼ 0

Furthermore, using (17), the following inequality can be
derived

A ⊤
i Pi,MAi − Pj,M ≺ 0

Letting P̃i = Pi,M , i ∈ I[1, NM ], one can obtain (19)
holds. The proof is complete.

Remark 3: The following observations can be made for the
result in Theorem 3:

1) Theorem 3 provides an alternative stability criterion for
switched linear system (5), which is a convexification
of Theorem 2 but without introducing any conservative-
ness. This convex feature will play a crucial role to solve
the robust stability analysis problem.

2) Theorem 3 can be viewed as a generalized version of
the convex lifted approach from dwell time switching to
arbitrary switching. Although the result in [22], [23] can
be also applied to arbitrary switching by simply letting
dwell time τ = 1, the benefit of lifting idea vanishes
in this particular case of τ = 1 and it then reduced to
switched Lyapunov function approach in [20]. Taking
the advantages of M -step sequence notion proposed in
this paper, even for arbitrary switching as dwell time
τ = 1, the benefit of M -step sequence idea can work for
further reducing conservatism other than conventional
switched Lyapunov function method. This will be shown
by an example later.

3) Similar as in [22], [23], the cost of the convexification
without introducing additional conservativeness is the
increase of computation complexity. The computation
complexities are listed in Table I.

Based on the convex condition in Theorem 3, the robust
exponential stability criterion can be obtained as follow.

Theorem 4: Consider switched linear system (5) with un-
certainties described by (15), there exist NM symmetric
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matrices Pi ≻ 0, i ∈ I[1, NM ] such that (9) holds if and
only if there exist MNM symmetric matrices Pi,m ≻ 0,
m ∈ I[0,M ], i ∈ I[1, NM ] such that the following inequali-
ties hold for ∀i, j ∈ I[1, NM ], ∀m ∈ I[1,M ],

(A
[l]
im
)⊤Pi,mA

[l]
im

− Pi,m−1 ≺ 0, l ∈ I[1, L] (24)

Pi,0 − Pj,M ≺ 0 (25)

then switched linear system (5) is GES.
Proof: The proof follows from simple convexity argu-

ments, and thus it is omitted here.
In this section, based on an alternative equivalent sufficient

condition for GES of switched linear system (5), the robust
stability analysis problem has been solved in the framework
of M -step sequence. The key point is the convexification idea
applied to the condition in Theorem 2, which can be further
extended to other problems as shown in the next section.

V. DISTURBANCE ATTENUATION PERFORMANCE
ANALYSIS

The convexification idea involved in Theorem 3 can be
not only used for robust stability analysis, it can be also
extended to other fundamental problems for switched systems
such as disturbance attenuation. Involving exogenous input
disturbances ω(t) ∈ Rl and output y(t) ∈ Rp, we consider
the following switched system:

x(t+ 1) = Aσ(t)x(t) +Bσ(t)ω(t)

y(t) = Cσ(t)x(t) +Dσ(t)ω(t)
(26)

where Bi ∈ Rn×l, Ci ∈ Rp×n, Di ∈ Rp×n.
The disturbance attenuation performance of system (26) is

considered in the sense of ℓ2-gain, which means system (26)
with ω(t) = 0 is GES and furthermore, under zero initial
condition, the input-output relation of system (26) satisfies the
following inequality:∑∞

t=t0
y⊤(t)y(t) ≤ γ2

∑∞

t=t0
ω⊤(t)ω(t) (27)

where disturbance ω(t) ∈ ℓ2[0,∞).
Theorem 5: Consider system (26), if there exist MNM

symmetric matrices Pi,m ≻ 0, m ∈ I[0,M ], i ∈ I[1, NM ]
such that ∀i, j ∈ I[1, NM ], ∀m ∈ I[1,M ],

−Pi,m−1 ∗ ∗ ∗
0 −γ2I ∗ ∗

Pi,mAim Pi,mBim −Pi,m ∗
Cim Dim 0 −I

 ≺ 0 (28)

Pi,0 − Pj,M ≺ 0 (29)

then system (26) is GES with ω(t) = 0, and has disturbance
attenuation performance in the sense of ℓ2-gain (27).

Proof: The GES can be easily obtained (28), (29). Hereby,
we mainly focus on the disturbance attenuation performance.

Let J =
∑∞

t=0 (y
⊤(t)y(t)− γ2ω(t)ω(t)), and for a se-

quence SM
i in which the start and terminal time are denot-

ed as ti0 and tiM , respectively. Then we define Li,m(t) =
x⊤(t)Pi,mx(t), m = t − ti0, and ∆Li,m(t) = Li,m(t + 1) −
Li,m(t).

Noting that the initial state x0 = 0, J can be rewritten as

J =
∞∑

h=0

(h+1)M−1∑
t=hM

Γi,m(t) + Li,0(hM)− Li,M ((h+ 1)M)


=

∞∑
h=0

(h+1)M−1∑
t=hM

Γi,m(t)

+

∞∑
h=1

(Li,0(hM)− Lj,M (hM))

where Γi,m(t) = y⊤(t)y(t)−γ2ω⊤(t)ω(t)+∆Li,m(t). Using
Schur complement formula yields

Ξi,m =

[
Ωi,m A⊤

im
Pi,mBim + C⊤

im
Dim

∗ B⊤
im
Pi,mBim +D⊤

im
Dim − γ2I

]
≺ 0

where Ωi,m = A⊤
im
Pi,mAim − Pi,m−1 + C⊤

im
Cim . Thus,

it leads to Γi,m(t) < 0, since Γi,m(t) = ξ⊤(t)Ξi,mξ(t),
where ξ(t) = [x⊤(t) ω⊤(t)]⊤. Moreover, (29) guarantees
Li,0(hM)− Lj,M (hM) < 0, ∀h = 1, 2, . . .. Therefore, J < 0
can be established, which implies the ℓ2-gain performance can
be established. The proof is complete.

Similar as stability analysis, a larger M would lead to a less
conservative result at the expense of a higher computational
complexity. In ℓ2-gain performance analysis, it means a larger
M yields a smaller γ for the optimization problem below:

min γ2 s.t. (28), (29) (30)

In this section, the M -step sequence approach has been ex-
tended to disturbance attenuation performance analysis prob-
lem in the sense of ℓ2-gain. It should be stressed that the
extension is made based on Theorem 3 other than Theorem 2,
since Theorem 3 has the promising convex feature in system
matrices Ai that allows the extension feasible.

VI. EXAMPLES

In this section, three examples are provided to show the
less conservatism and effectiveness of our proposed approach.
Those examples are all executed by using Matlab and tool-
boxes YALMIP [25] on a personal computer with Windows
7, Intel Core i5-4200U, 1.6GHz, 4 GB RAM.

Example 1: Let us consider the system (5) with matrices
Ai = eBiT , where

B1 =

[
0 1

−10 −1

]
, B2 =

[
0 1

−0.1 −4

]
(31)

Letting T = 0.1, and using switched Lyapunov function
approach in [20] (also viewed as M = 1 in our M -step
sequence approach), it can be found that the LMI problem
is not feasible, so that the GES cannot be determined by
the approach in [20]. Moreover, by applying the method in
[22], [23], the minimum admissible dwell time is computed
as 2, which also indicates that the GES of switched system (5)
cannot be ascertained for the case of arbitrary switching, for
which the minimum dwell time should be 1. However, those
results are conservative in stability analysis for the switched
system in this example, because GES can be established by
the M -step sequence approach proposed in this paper.
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Fig. 1. State response under switching occurring at each time instant.

TABLE II
COMPUTATIONAL TIME (SECOND) BY USING THEOREMS 2 AND 3

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7
Th.2 infeasible 0.245 0.539 1.344 5.440 17.930 79.227
Th.3 infeasible 0.335 0.929 2.448 7.590 28.043 101.729

Just letting M = 2 in the M -step sequence method,
the feasibility of the corresponding LMI problems can be
established with the following matrices Pi, i ∈ I[1, 22]

P1 =

[
2.7228 0.1389
0.1389 0.3716

]
, P2 =

[
2.6830 0.2773
0.2773 0.3731

]
P3 =

[
2.4503 0.3519
0.3519 0.3983

]
, P4 =

[
2.8338 0.5928
0.5928 0.3593

]
which is sufficient to guarantee that the system is GES under
arbitrary switching.

The convergent state evolution is shown by the following
simulation result in Fig. 1, where the extreme switching
behavior, i.e., the switching occurs at each time instant, is
adopted, and the initial state is assumed to be x0 = [3 5]⊤.

Then, In order to show the equivalence between Theorem
2 and Theorem 3, we apply Theorem 3 and the feasibility
of LMIs can be established by choosing M ≥ 2, which is
consistent with the result obtained by Theorem 2. Despite the
equivalency, the computational cost is different as what has
been clarified in Table I. The computational time is listed in
Table II. In the rest of simulation, the average computational
time is recorded by running the each program 100 times and
obtain the average value of them. It can be observed that the
computational time grows as M increases, and Theorem 3 uses
more time than Theorem 2 for every M , which coincides with
Table I.

Example 2: Let us consider the uncertain switched system
(5)–(15) with polytopes

A1 =

{[
0.952 0.094
−0.935 0.858

]
,

[
0.152 −0.306
−1.335 0.058

]}
A2 =

{[
0.999 0.082
−0.008 0.670

]
,

[
0.199 −0.318
−0.408 −0.130

]}
In presence of uncertainties, Theorem 2 only works for the

case of M = 1, but unfortunately no feasible solution exists
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4.20144.9234
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12.178 s

25.931 s

Fig. 2. ℓ2-gain computation and average computational time.

for M = 1 in Theorem 2, which means the switched Lyapunov
function approach in [20] cannot be applied for this uncertain
system and, we have to resort to Theorem 4.

Using Theorem 4, we need to increase M in Theorem 4
to check GES. It can be easily found that the GES of the
uncertain switched system under arbitrary switching can be
guaranteed by choosing M ≥ 3.

Example 3: Consider system (26) with two subsystems and
u(t) = 0, Ai, i ∈ {1, 2} are given same as in Example 1,
then let C1 = C2 = [0.1 0.5], F1 = F2 = [0.1 0.2]⊤ and
G1 = G2 = 0.

First, it needs to be mentioned that the classical switched
Lyapunov function approach cannot work for this example in
ℓ2-gain performance analysis, as it equals to the case of M = 1
which has no feasible solution. Thus, we increase and use
Theorem 5 along with different M ≥ 2, the minimum ℓ2-gains
by (30) are computed and plotted in Fig. 2(a). Furthermore,
the average computational times are also drawn in Fig. 2(b).
It can be seen in Fig. 2 that the computed ℓ2-gain decreases
as M increases, which indicates less conservative results can
be obtained along with M grows larger, but the price to pay
is the computational expenses.

Moreover, it is interesting to see in this example that,
the conservativeness is reduced much more obviously when
the steps are added for a sequence with less length, as the
additional step takes a greater proportion in the new sequence.
For example, doubling the value of M = 1 to M = 2 turns
the infeasibility of problem to being feasible, then adding one
step from M = 2 to M = 3 actually extends the length of
the old sequence by 1.5 times, and the minimum ℓ2-gain is
reduced significantly, i.e., from 21.3654 to 7.3615. But the
latter increment from M = 3 to M = 4 only produces a little
reduction on minimum ℓ2-gain, just from 4.9234 to 4.2014.

VII. CONCLUSIONS

Globally exponential stability analysis problem for discrete-
time switched systems under arbitrary switching has been
addressed in this paper. Based on the M -step sequence con-
ception, a necessary and sufficient condition ensuring the
GES of switched nonlinear systems is obtained, and then in
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the framework of quadratic Lyapunov function, a stability
criterion for linear case is proposed. In order to extend the
result to robust stability analysis in presence of time-varying
uncertainties, an equivalent stability criterion with convex
feature in system matrices is developed to deal with uncertain
switched systems. The disturbance attenuation performance
characterized in the sense of ℓ2-gain is also studied. Finally,
numerical examples are given to show the theoretical findings
in this paper.
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