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Nonconservative Lifted Convex Conditions for
Stability of Discrete-Time Switched Systems under

Minimum Dwell-Time Constraint
Weiming Xiang, Hoang-Dung Tran and Taylor T. Johnson

Abstract—In this note, a novel conception called virtual clock,
which is defined by an artificial timer over a finite cycle, is
introduced for stability analysis of discrete-time switched linear
systems under minimum dwell-time constraint. Two necessary
and sufficient conditions associated with a virtual clock with
a sufficient length are proposed to ensure the global uniform
asymptotic stability of discrete-time switched linear systems.
For the two nonconservative stability criteria, the lifted version
maintains the convexity in system matrices. Based on the lifted
convex conditions, the extensions to ℓ2-gain computation and
H∞ control problems are presented in the sequel. In particular,
a novel virtual-clock-dependent controller is designed, which
outperforms the traditional mode-dependent and common gain
controllers. Several numerical examples are provided to illustrate
our theoretic results.

Index Terms—Switched system; dwell time; stability; ℓ2-gain;
H∞ control

I. INTRODUCTION

A switched system is composed of a finite number of
dynamic subsystems described by differential or difference
equations, along with a switching rule governing the switching
among them. The motivation for studying switched systems
comes from the fact that switched systems can be efficiently
used to model many practical systems that are inherently
multi-modal. In this regard, several dynamic subsystem models
are required to describe system behaviors. Among the large
variety of problems studied in theory and encountered in
practice, stability analysis is one of the core problems in
the field of switched systems, which attracts a considerable
research attention in the last decade, readers may refer to [1]–
[7], and the references cited therein.

One way to study the stability of switched systems is
through the notions of dwell time and average dwell time,
which are used to characterize the switching rate of a switched
system. In the framework of Lyapunov function, a number of
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methods have been reported and demonstrated to be effective
in stability analysis [8]–[15]. Reachability analysis methods
have been utilized to solve the stability analysis problems in
[16]–[21].

Recently, a promising method called lifting approach has
been proposed in both continuous-time [22], [23] and discrete-
time [24], [25] domains. Those lifted conditions are equivalent
convexifications of the well-known results in [10], [11], [26].
This convex feature can significantly facilitate further exten-
sions from stability results to other relevant problems such
as robust stability analysis, input-output performance analysis,
etc. Some recent generalizations and applications of this lifted
idea can be found in terms of more general homogeneous
Lyapunov functions [27], extreme cases such as the switched
system being fully composed by unstable subsystems [28],
hybrid positive systems [29], stochastic systems [30], periodic
systems [31], fault-tolerant control [32], etc. In the framework
of quadratic Lyapunov functions, those proposed lifted condi-
tions expressed in terms of linear matrix inequalities (LMIs)
may sometimes provide tight results, however, they are not
necessary in general. Thus, the main problem addressed in
this paper arises:

• Can the necessity for the stability of switched systems
be also recovered by further generalizing the lifting
approach? Namely, can we derive a nonconservative
stability criterion for switched systems in the framework
of lifting approach?

In [33], a nonconservative stability result is derived in
the framework of polynomial functions, where the non-
conservativeness can be achieved with a sufficiently high
degree of the polynomial function. In [34]–[36], the lifting
approach is used for stability analysis for switched systems
under constrained switching signals and controller design [37],
where the switching constraint are mostly characterized by
switching graphs or language. In this paper, we will answer
this question for a class of time-dependent switched systems
under dwell time constraint by gnerealize the results in [24],
[25]. To make the generalization and inspired by [34]–[37], we
introduce a novel conception called virtual clock for discrete-
time switched linear systems, which generalizes the framework
of dwell time and plays a fundamental role for achieving the
non-conservativeness in stability analysis. It also needs to be
noted that we further explore the relationship between lifting
approach and the well-known method in [11]. With the help
of virtual clock, two necessary and sufficient conditions for
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global uniform asymptotic stability of discrete-time switched
linear systems under minimum dwell-time constraint are pro-
posed. It is worthwhile mentioning that the nonconservative
lifted convex version can be viewed as the extension of the
sufficient lifted convex condition [24], and the other one can
be also viewed as a nonconservative extension of the well-
known result in [11]. Then, by the merit of convexity of lifted
conditions, the stability result can be extended to solve ℓ2-
gain computation problem. Finally, based on the virtual clock,
a class of H∞ virtual-clock-dependent feedback controllers
are designed, which have a better performance than the con-
ventional mode-dependent and common gain controllers.

Notations: N represents the set of natural numbers, R
denotes the field of real numbers, R+ is the set of nonnegative
real numbers, and Rn stands for the vector space of all n-tuples
of real numbers, Rn×n is the space of n × n matrices with
real entries. The set of n × n (positive definite) symmetric
matrices is denoted by (Sn≻0) Sn. ∥·∥ stands for Euclidean
norm. For a set A, |A| denotes its cardinality. The notation
A ≻ 0 means A is real symmetric and positive definite.
A ≻ B means that A − B ≻ 0. A⊤ denotes the transpose
of A. In addition, in symmetric block matrices, we use *
as an ellipsis for the terms that are induced by symmetry.
A continuous function α : R+ → R+ is a class K function
if it is strictly increasing and α(0) = 0. Moreover, a function
β : R+ × R+ → R+ is a class KL function if, for each fixed
s, the function β(r, s) is a class K function with respect to r
and, for each fixed r, the function β(r, s) is decreasing with
respect to s and β(r, s) → 0 as s → ∞. int[x] denotes the
integer part of x. For two integers k1 and k2, k1 ≤ k2, we
define I[k1, k2] , {k1, k1 + 1, . . . , k2}.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this paper, let us consider a class of linear switched
systems in the following form

x(k + 1) = Aσ(k)x(k)

x(0) = x0

(1)

where x(k), x0 ∈ Rn are the system state vector and ini-
tial state, respectively. The switching signal σ is defined as
σ : N → I[1, N ], where N is the number of subsystems
involved in the switched system. Let the switching instants
be denoted by kℓ, and let k0 = 0 be the initial time by
convention. In addition, let S , {kℓ}ℓ∈N be the sequence of
switching instants. Calling Dτ the set of all switching policies
with dwell time τ , that is the set of all σ(k) for which the
time intervals between any successive discontinuities of σ(k)
satisfy kℓ+1 − kℓ ≥ τ , ∀ℓ ∈ N.

Definition 1: [38] The equilibrium x = 0 of system (1)
is globally uniformly asymptotically stable (GUAS) under
switching signal σ(k) if, for any initial condition x(0), there
exists a class KL function β such that the solution of system
(1) satisfies ∥x(k)∥ ≤ β(∥x(0)∥ , k), ∀k ∈ N.

One of the basic problems for stability analysis of switched
systems is to determine the minimum dwell time guaranteeing
the GUAS, named the minimum dwell time problem which is
defined as

τmin = min{τ > 0 : System (1) is GUAS ∀σ(k) ∈ Dτ} (2)

For the minimum dwell time problem, two well-known
results are recalled.

Theorem 1: [11] Given that for some positive scalar τ ,
if there exist a collection of symmetric matrices Pi ∈ Sn≻0,
i ∈ I[1, N ], such that the following conditions

A⊤
i PiAi − Pi ≺ 0 (3)

(Aτ
i )

⊤PjA
τ
i − Pi ≺ 0 (4)

hold for all i, j ∈ I[1, N ], i ̸= j, then system (1) is GUAS
with any switching signals σ(k) ∈ Dτ .

In terms of Lyapunov functions with quadratic structure, the
above result seems to be the best possible so far. However, the
LMIs in (4) depend on the exponential term Aτ

i , which is not
convex in system matrices Ai. This underlying non-convexity
prevents further extensions such as robust stability analysis,
controller design, input-output performance analysis, etc. To
circumvent this, a set of alternative equivalent conditions in
terms of LMIs that are affine in the systems matrices have been
proposed in [24], which are called lifted convex conditions.

Theorem 2: [24] Given that for some positive scalar τ , if
there exist matrix sequences Pi : I[0, τ ] → Sn≻0, i ∈ I[1, N ],
such that the following conditions

A⊤
i Pi(τ)Ai − Pi(τ) ≺ 0 (5)

A⊤
i Pi(k + 1)Ai − Pi(k) ≺ 0 (6)

Pi(0)− Pj(τ) ≺ 0 (7)

hold for all i, j ∈ I[1, N ], i ̸= j and k ∈ I[0, τ − 1], then
system (1) is GUAS with any switching signals σ(k) ∈ Dτ .

It has been demonstrated that the lifted condition in The-
orem 2 is an equivalent convexification of Theorem 1, at an
expense of more computational costs in solving LMIs. By the
merit of convexity, Theorem 2 can be easily extended to those
problems that Theorem 1 is incapable of dealing with, for
instance robust stability analysis, controller design and input-
output performance analysis. Though Theorem 2 with a set
of lifted convex conditions has some obvious advantages over
Theorem 1, it is in essence a sufficient stability criterion same
as Theorem 1. In this paper, our main aim is to further develop
the lifting idea to derive a nonconservative stability criterion
for switched system (1).

III. NECESSARY AND SUFFICIENT LIFTED CONVEX
STABILITY CONDITIONS

A. Virtual Clock and Admissible Cycles

The lifted conditions in [24] are expressed in the form of
a sequence of inter-dependent LMIs defined over dwell-time
interval [0, τ ]. In order to further develop the lifting idea, a
novel notion we call virtual clock is first introduced.

Definition 2: A virtual clock is defined by

CL , {θ(k), [0, L− 1]} (8)

where θ(k) is an artificial timer in the form of

θ(k) = k − Lint[k/L], k ∈ N (9)

taking values in [0, L− 1].
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Given a dwell-time constraint kℓ+1 − kℓ ≥ τ , ∀ℓ ∈ N, and
a virtual clock CL with a length L ≥ τ , the conception of ad-
missible switching path with respect to {CL, τ} is introduced.

Definition 3: Given a dwell time τ and a virtual clock CL,
L ≥ τ , a switching path S , {i0, . . . , iL−1}, i0, . . . , iL−1 ∈
I[1, N ], over cycle [0, L−1], is an admissible path with respect
to {CL, τ}, if all the switchings in path S satisfy the dwell-
time constraint. The index set of all admissible switching paths
is denoted by A (L, τ).

Furthermore, the concatenation of two admissible switching
paths needs to be considered to fully characterize the evolution
of a switching signal. The set of post-admissible paths with
respect to an admissible switching path is defined as follows.

Definition 4: Given two admissible switching paths S1 ,
{i0, . . . , iL−1} and S2 , {j0, . . . , jL−1} with respect to
{CL, τ}, S2 is the post-admissible switching path of S1,
if all the switchings in concatenation path {S1,S2} ,
{i0, . . . , iL−1, j0, . . . , jL−1} satisfy the dwell-time constraint.
The index set of all post-admissible switching paths of switch-
ing path i ∈ A (L, τ) is denoted by PA (i), i ∈ A (L, τ).

The following example is presented to illustrate the notions
of admissible and post-admissible paths.

Example 1: Consider a switched system with two modes,
the dwell time is assumed to be τ = 2, the length of the cycle
of the virtual clock is chosen to be L = 3. Explicitly, switching
paths {1, 2, 1} and {2, 1, 2} violate the dwell-time constraint
since the time between two switchings is 1 which is less
than the dwell time 2. By excluding those two inadmissible
switching paths, 6 admissible switching paths remain, and they
are denoted by {S1,S2,S3,S4,S5,S6}, where S1 , {1, 1, 1},
S2 , {1, 1, 2}, S3 , {1, 2, 2}, S4 , {2, 1, 1}, S5 , {2, 2, 1},
S6 , {2, 2, 2}. For the 6 admissible switching paths, the index
set is denoted by A (3, 2) = {1, 2, 3, 4, 5, 6}

Then, we take S1 for example to determine the post-
admissible switching paths. By excluding the inadmissible
post-switching path S4 since {S1,S4} , {1, 1, 1, 2, 1, 1} obvi-
ously violates the dwell-time constraint, the index set of post-
admissible switching paths of S1 is PA (1) = {1, 2, 3, 5, 6}.

By the definitions of admissible path and post-admissible
path, we can see that set A (L, τ) includes all of the admis-
sible switching paths with dwell-time restriction and PA (i),
∀i ∈ A (L, τ) covers all the admissible concatenations of two
successive admissible switching paths. Therefore, it can be
concluded that all the evolutions of switching signal σ(k)
under dwell-time switching constraint are involved in sets
A (L, τ) and PA (i), ∀i ∈ A (L, τ).

B. Nonconservative Stability Criterion

Based on the conception of virtual clock, the main con-
tribution, that is the two necessary and sufficient conditions
for the stability of discrete-time switched linear system (1), is
presented in the following theorem.

Theorem 3: Consider switched system (1), the following
three statements are equivalent:

(a) Switched system (1) is GUAS with any switching signals
σ(k) ∈ Dτ ;

(b) There exist a scalar L ≥ τ and symmetric matrix
sequences Pi : I[0, L] → Sn≻0, i ∈ A (L, τ) such that

A⊤
ik
Pi(k + 1)Aik − Pi(k) ≺ 0, ik ∈ I[1, N ],

i ∈ A (L, τ), k = 0, . . . , L− 1 (10)
Pi(0)− Pj(L) ≺ 0, i ∈ PA (j), j ∈ A (L, τ) (11)

(c) There exist a scalar L ≥ τ and symmetric matrices Pi ∈
Sn≻0, i ∈ A (L, τ) such that(

L∏
h=1

AiL−h

)⊤

Pi

(
L∏

h=1

AiL−h

)
− Pj ≺ 0,

i ∈ PA (i), j ∈ A (L, τ) (12)

where
∏L

h=1 AiL−h
= AiL−1

· · ·Ai0 .
Proof: (a) ⇒ (b): Given any Pi(L) ∈ Sn≻0, i ∈ A (L, τ),

and any Xi(k) ∈ Sn≻0, k ∈ I[0, L− 1], i ∈ A (L, τ), we can
define Pi(k) in the form of

Pi(k) =

(
L−k∏
h=1

AiL−h

)⊤

Pi(L)

(
L−k∏
h=1

AiL−h

)
+ Yi(k) (13)

where

Yi(k) ,
L−k−1∑
s=1

(
L−k−1∏
h=s

AiL−h

)⊤

Xi(L− s)×(
L−k−1∏
h=s

AiL−h

)
+Xi(k)

Obviously, Pi(k) in (13) satisfies A⊤
ik
Pi(k+1)Aik−Pi(k) =

−Xi(k). Thus, (10) holds due to Xi(k) ≻ 0, k ∈ I[0, L− 1],
i ∈ A (L, τ). Then, letting k = 0 in (13), it arrives

Pi(0) =

(
L∏

h=1

AiL−h

)⊤

Pi(L)

(
L∏

h=1

AiL−h

)
+ Yi(0) (14)

First, due to Pi(L) ∈ Sn≻0 and Xi(k) ∈ Sn≻0, it is easy to
see that Pi(k) ∈ Sn≻0. Then, we consider Pi(0) − Pj(L) in
(11), which, using (14), can be rewritten as

Pi(0)− Pj(L)

=

(
L∏

h=1

AiL−h

)⊤

Pi(L)

(
L∏

h=1

AiL−h

)
+ Yi(0)− Pj(L)

(15)

Given any admissible switching path i ∈ A (L, τ),
using the definition of state transition matrix x(L) =
Φ(L, 0)x(0), where Φ(L, 0) =

∏L
h=1 AiL−h

, where se-
quence {i0, . . . , iL−1} is admissible with respect to dwell-
time τ , thus it can be obtained that Pi(0) − Pj(L) =
Φ⊤(L, 0)Pi(L)Φ(L, 0) + Yi(0)− Pj(L).

If system (1) is GUAS, there exists a class KL function
β such that ∥x(L)∥ ≤ β(∥x(0)∥ , L) holds, which means
∥Φ(L, 0)x(0)∥ ≤ β(∥x(0)∥ , L). Because β is a class KL
function, it implies that limL→∞ β(∥x(0)∥ , L) = 0 and
as a result, one has limL→∞ ∥Φ(L, 0)x(0)∥ = 0, leading
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to limL→∞ Φ(L, 0) = 0. Thus, for any arbitrarily chosen
Pi(L) ∈ Sn≻0, there exists an ϵ > 0 such that

limL→∞ Φ⊤(L, 0)Pi(L)Φ(L, 0)− Pj(L) = −Pj(L) ≺ −ϵI

It implies that there exists a sufficiently large L∗ such that,
for any L ≥ L∗, the following inequality holds

Φ⊤(L, 0)Pi(L)Φ(L, 0)− Pj(L) ≺ −ϵI (16)

Thus, for any L ≥ L∗, it has Pi(0)− Pj(L) ≺ −ϵI + Yi(0).
Moreover, since Xi(k), k ∈ I[0, L − 1], i ∈ A (L, τ) are

arbitrarily chosen, Xi(k) can be adjusted to make Yi(0) be
sufficiently small to attain Pi(0)−Pj(L) ≺ 0. Therefore, (11)
holds.

(b) ⇒ (a): Due to Pi(k) ∈ Sn≻0, for each interval [nL, (n+
1)L], we construct Lyapunov functions in the following form

Vi(x(k)) =

{
x⊤(k)Pi(θ(k))x(k), k ∈ [nL, (n+ 1)L− 1]
x⊤(k)Pi(L)x(k), k = (n+ 1)L

(17)
where i ∈ A [L, τ ] and θ(k) is the artificial timer defined by
(9). Then, for any admissible switching path i ∈ A [L, τ ], we
have

∆Vi(x(k)) = Vi(x(k + 1))− Vi(x(k))

= x⊤(k)[A⊤
ik
Pi(θ(k + 1))Aik − Pi(θ(k))]x(k)

and (10) ensures that

∆Vi(x(k)) < 0, k ∈ [nL, (n+ 1)L− 1], n ∈ N (18)

Furthermore, let us consider the concatenation between two
switching paths. Suppose j ∈ A (L, τ) and i ∈ PA (j), (11)
implies that

Vi(x(k)) < Vj(x(k)), k = (n+ 1)L, n ∈ N (19)

From (18) and (19), the value of Lyapunov function (17)
is always decreasing along with the time. Therefore, the
GUAS of system (1) can be established by standard Lyapunov
theorem [38].

(b) ⇒ (c): Since (11) holds, using (15) implies that the
following inequality can be obtained(

L∏
h=1

AiL−h

)⊤

Pi(L)

(
L∏

h=1

AiL−h

)
− Pj(L) ≺ −Yi(0)

Moreover, by Yi(k) defined in (13), it can be obtained
Yi(0) ≻ 0, thus we have(

L∏
h=1

AiL−h

)⊤

Pi(L)

(
L∏

h=1

AiL−h

)
− Pj(L) ≺ 0

which means (12) holds, just by letting Pi = Pi(L).
(c) ⇒ (b): (10) and Pi(k) ∈ Sn≻0 have been established at

the beginning of (a) ⇒ (b), so in the rest we only need to
consider (11). Since (12) holds, it implies that there exists an
ϵ > 0 such that(

L∏
h=1

AiL−h

)⊤

Pi

(
L∏

h=1

AiL−h

)
− Pj ≺ −ϵI

TABLE I
COMPUTATIONAL COMPLEXITY OF STATEMENTS (a) AND (b)

(M = |A [L, τ ]| ,m(i) = |PA (i)|, i ∈ A [L, τ ])

Statement Number of variables Size of LMIs
(b) n(n+1)(L+1)M

2
nM(L− 1) + n

∑
i∈I[1,M ] m(i)

(c) n(n+1)M
2

n
∑

i∈I[1,M ] m(i)

Again, letting Pi(L) = Pi and using (15) can derive the
following inequality Pi(0) − Pj(L) ≺ −ϵI + Yi(0). Since
Xi(k), k ∈ I[0, L − 1], i ∈ A (L, τ) are arbitrarily chosen,
Xi(k) can be adjusted to make Yi(0) sufficiently small to
achieve Pi(0)− Pj(L) ≺ 0. Therefore, (11) holds.

Remark 1: Theorem 3 is the main result in this paper, some
observations are made as below:

(1) Statement (b) generalizes the lifted convex idea of
Theorem 2 on the basis of virtual clock. Unlike in [24]
where the lifted idea was implemented over the dwell-
time interval, Statement (b) is derived based on the cycle
of virtual clock. Moreover, it should be stressed that this
generalization is able to finally achieve a nonconserva-
tive stability criterion, if the system is equipped with a
virtual clock with a sufficiently long cycle.

(2) Statement (c) can be viewed as an improvement of
Theorem 1 proposed in [11], since the condition in
Statement (c) is a necessary and sufficient condition in
contrast to Theorem 1 which is only a sufficient one.
However, similar as in Theorem 1, system matrices Ai

are not convex in (12), due to the presence of intricate
multiplication of Ai, that is,

∏L
h=1 AiL−h

.
(3) Like the relationship between Theorems 1 and 2, State-

ment (b) is an equivalent convexification of Statement
(c). Despite the equivalence of two conditions, the com-
putational complexities are different. The computational
complexities are listed in Table I. In Table I, it is
shown that Statement (b) has a higher computational
complexity than Statement (c) for checking the stability
of system (1), which is the cost of convexification while
still maintaining the same conservativeness in stability
analysis.

If the special case τ = 1, that is the arbitrary switching
case, is taken into account, it leads to |A (L, τ)| = NL, so
that the following corollary can be derived.

Corollary 1: Consider switched system (1) under arbitrary
switching, the following three statements are equivalent:

(a) Switched system (1) is GUAS;
(b) There exist a scalar L ≥ τ and symmetric matrix

sequences Pi : I[0, L] → Sn≻0, i ∈ I[1, NL], such that

A⊤
ik
Pi(k + 1)Aik − Pi(k) ≺ 0, ik ∈ I[1, N ] (20)

Pi(0)− Pj(L) ≺ 0 (21)

hold for all i, j ∈ I[1, NL] and k = 0, . . . , L− 1;
(c) There exist a scalar L ≥ τ and symmetric matrices Pi ∈

Sn≻0, i ∈ I[1, NL], such that(
L∏

h=1

AiL−h

)⊤

Pi

(
L∏

h=1

AiL−h

)
− Pj ≺ 0 (22)
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hold for all i, j ∈ I[1, NL].
Proof: For arbitrary switching, the admissible cycle al-

lows all possible switching paths, so it has A (L, τ) =
{1, 2, . . . , NL} and PA (i) = {1, 2, . . . , NL}, ∀i ∈ A (L, τ).
Thus, it can be proved based on Theorem 3 and is omitted.

In this subsection, two necessary and sufficient conditions
are provided to ensure the GUAS of discrete-time switched
linear systems. The following numerical example is provided
to illustrate the improvement made by virtual clock approach
over other approaches.

Example 2: Let us consider the system (1) with two sub-
systems as below:

A1 =

[
0.969 0.0761

−0.7607 0.8929

]
, A2 =

[
0.9997 0.0685
−0.0068 0.7259

]
In order to show the improvement made by our approach,

we first use the approaches in [11], [24], namely Theorems
1 and 2, to compute the minimum dwell time τmin = 3,
and meanwhile we apply the virtual clock approach. The
computation results are shown in Table II.

TABLE II
COMPUTATION ON MINIMAL DWELL TIME τmin

Methods τmin Computational Time
(b) in Corollary 1 (L = 3) 1 0.101412 seconds
(c) in Corollary 1 (L = 3) 1 0.04883 seconds

It can be found that less conservative results can be obtained
when we let L = 3, that is τmin = 1. Moreover, note that
τmin = 1 indicates that the system is GUAS under arbitrary
switching, and this is explicitly a nonconserevative result for
the proposed switched system. The convergent state evolutions
are shown by the simulation results in Figure 1, where 1000
state trajectories are randomly generated. All these state trajec-
tories converge to the origin to show the GUAS of the system.
Furthermore, assuming the initial state is x(0) = [1 1]⊤,
the Lyapunov function derived from condition (b) is strictly
decreasing as shown in Figure 1, which guarantees the GUAS.

Though Statements (b) and (c) can both achieve the same
result, the computational complexities are different as Table
I indicates. The computational time is also listed in Table
II, it shows that Statement (b) needs to afford a higher
computational cost, which is consistent with Table I.

According to Table I, the number of variables and LMIs
will grow to a large number as L is a large number, this may
lead to difficulties in practical use of the developed approach.
However, if the information of the switching rule is known,
the computation cost will be affordable even L is large. Let
us consider the example in [18], the system matrices are

A1 =

[
1 0.1

−0.2 0.9

]
, A2 =

[
1 0.1

−0.9 0.9

]
The switching is a periodic one with kℓ+1 − kℓ = 15, ∀ℓ ∈ N
and δ(0) = 1. Thus, we can choose L = 15 and two
admissible cycles S1 = {1, 1, . . . , 1}, S2 = {2, 2, . . . , 2} are
sufficient to characterize the switching law and corresponding
virtual clock. Applying both conditions (b) and (c) in Theorem
3, the stability can be established with τ = 15, which is
consistent with [18]. Moreover, it can be seen that τ15 is a

Fig. 1. 1000 randomly generated state trajectories and evolution of Lyapunov
function.

nonconservative result since the spectrum of A14
1 A14

2 contains
one eigenvalue outside the unit disc.

IV. ℓ2-INDUCED GAIN COMPUTATION

Involving control input u(k) ∈ Rm, exogenous input dis-
turbances ω(k) ∈ Rl and output y(k) ∈ Rp, we consider the
following switched system in the rest of this paper:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) + Eσ(k)ω(k)

y(k) = Cσ(k)x(k) +Dσ(k)u(k) + Fσ(k)ω(k)
(23)

where Bi, Ci, Di, Ei and Fi are constant matrices with
appropriate dimensions.

Definition 5: For γ > 0, system (23) with u(k) = 0 is
said to be GUAS with an ℓ2-gain performance at a level γ,
if system (23) is GUAS when u(k) = 0 and ω(k) = 0, and
under zero initial conditions, the following inequality holds
for all nonzero ω(k) ∈ ℓ2[0,∞),∑∞

k=0
y⊤(k)y(k) ≤ γ2

∑∞

k=0
ω⊤(k)ω(k) (24)

where γ is called the ℓ2-gain, and the ℓ2-induced gain of
system (23) with u(k) = 0 is defined by γ∗ , inf{γ ≥ 0 :
(24) holds, ∀ω(k) ∈ ℓ2[0,∞), ω(k) ̸= 0}.

Based on the virtual clock idea, the following theorem can
be derived for ℓ2-gain performance analysis of system (23).

Theorem 4: Given a scalar γ > 0 and consider system (23)
with u(k) = 0 and σ(k) ∈ Dτ , if there exist a scalar L ≥ τ
and symmetric matrix sequences Pi : I[0, L] → Sn≻0, i ∈
A (L, τ) such that

Θi(k) ≺ 0, i ∈ A (L, τ), k = 0, . . . , L− 1 (25)
Pi(0)− Pj(L) ≺ 0, i ∈ PA (j), j ∈ A (L, τ) (26)
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where

Θi(k) =


−Pi(k) ∗ ∗ ∗

0 −γ2I ∗ ∗
Pi(k + 1)Aik Pi(k + 1)Eik −Pi(k + 1) ∗

Cik Fik 0 −I


and ik ∈ I[1, N ], then system (23) with u(k) = 0 and ω(k) =
0 is GUAS, and has an ℓ2-gain γ.

Proof: The GUAS can be obtained by (25), (26), directly
using (10) and (11) in Theorem 3. In the rest of proof, we
therefore only need to focus on proving ℓ2-gain performance.

Let
J =

∑∞

k=0
(y⊤(k)y(k)− γ2ω(k)ω(k)) (27)

Then, we construct Lyapunov function Vi(x(k)) in the form
of (17). Noting that the initial state x0 = 0, J can be rewritten
as

J =
∞∑
h=0

(h+1)L−1∑
k=hL

Γi(k) + Vi(x(hL))− Vi(x((h+ 1)L))


=

∞∑
h=0

(h+1)L−1∑
k=hL

Γi(k)

+

∞∑
h=1

(Vi(x(hL))− Vj(x(hL)))

where Γi(k) = y⊤(k)y(k) − γ2ω⊤(k)ω(k) + ∆Vi(x(k)).
Using Schur complement formula, (25) yields

Ξi(k) =

[
Ωi(k) A⊤

ik
Pi(k + 1)Eik + C⊤

ik
Fik

∗ E⊤
ik
Pi(k + 1)Eik + F⊤

ik
Fik − γ2I

]
≺ 0

where Ωi(k) = A⊤
ik
Pi(k + 1)Aik − Pi(k) + C⊤

ik
Cik . Thus,

it leads to Γi(k) < 0, since Γi(k) = ξ⊤(k)Ξi(k)ξ(k),
where ξ(k) = [x⊤(k) ω⊤(k)]⊤. Moreover, (26) guarantees
Vi(x(hL))− Vj(x(hL)) < 0, ∀h = 1, 2, . . .. Therefore, J < 0
can be established, which implies the ℓ2-gain performance can
be established. The proof is complete.

Remark 2: Similar as stability analysis, a larger L would
lead to a less conservative result at an expense of a high-
er computational complexity. Regarding ℓ2-gain performance
analysis, it means that a larger L will yield a smaller γ for
the optimization problem below:

min γ2 s.t. (25), (26) (28)

Example 3: Consider system (23) with two subsystems and
u(k) = 0, Ai, i ∈ {1, 2} are given same as in Example 2,
then let C1 = C2 = [0.1 0.2], E1 = E2 = [0.1 − 0.1]⊤ and
F1 = F2 = 0.

In Example 2, the GUAS of the proposed system only can be
established for τmin ≥ 3. As an extension of stability analysis,
the ℓ2-gain computation result in [24] is unable to compute ℓ2-
gain for τmin < 3.

Using Theorem 4, we can compute the ℓ2-induced gain for
τmin < 3. For example with τmin = 1, the ℓ2-induced gain
can be computed with L ≥ 3, , see Table IV for the the ℓ2-
induced gains with different L. It can be observed that the
estimation of ℓ2-induced gain decreases as L grows, but more
computational time is required for the computation.

TABLE III
ℓ2-INDUCED GAIN COMPUTATION AND COMPUTATIONAL TIME (SECOND)

L = 3 L = 4 L = 5
ℓ2-induced gain γ∗ 7.7453 3.9781 3.9669
Computational time 0.376973 3.9781 16.938713

V. VIRTUAL-CLOCK-DEPENDENT H∞ CONTROL

In this section, the H∞ control problem for system (23)
is considered. Taking advantage of the convex feature in the
virtual clock idea, a novel virtual-clock-dependent controller
is introduced in the form of

u(k) = Ki(θ(k))x(k), i ∈ I[1, N ] (29)

where θ(k) is the artificial timer defined by (9). Substituting
controller (29) into system (23), the closed-loop system be-
comes

x(k + 1) = Ãσ(k)x(k) + Eσ(k)ω(k)

y(k) = C̃σ(k)x(k) + Fσ(k)ω(k)
(30)

where Ãi = Ai + BiKi(θ(k)), C̃i = Ci +DiKi(θ(k)). The
design objective is to find proper feedback gains Ki(θ(k)),
i ∈ I[1, N ], to ensure the ℓ2-gain performance of closed-loop
system (30).

Theorem 5: Given a scalar γ > 0 and consider system (23)
with σ(k) ∈ Dτ , if there exist a scalar L ≥ τ and symmetric
matrix sequences Qi : I[0, L] → Sn≻0, i ∈ A (L, τ), matrix
sequences Ui : I[0, L − 1] → Rm×n, Wi : I[0, L − 1] →
Rn×n, i ∈ I[1, N ] such that

Ξi(k) ≺ 0, i ∈ A (L, τ), k = 0, . . . , L− 1 (31)
Qj(L)−Qi(0) ≺ 0, i ∈ PA (j), j ∈ A (L, τ) (32)

where

Ξi(k) =


Ξi,1(k) ∗ ∗ ∗

0 −γ2I ∗ ∗
Ξi,2(k) Eik −Qi(k + 1) ∗
Ξi,3(k) Fik 0 −I


in which Ξi,1(k) = Qi(k) − W⊤

i (k) − Wi(k), Ξi,2(k) =
AikWi(k) +BikUi(k) and Ξi,3(k) = CikWi(k) +DikUi(k),
ik ∈ I[1, N ], then closed-loop system (30) is GUAS with
ω(k) = 0 and has an ℓ2-gain γ, where virtual-clock dependent
feedback gains Ki(θ(k)), i ∈ I[1, N ] are

Ki(θ(k)) = Ui(θ(k))W
−1
i (θ(k)), i ∈ I[1, N ] (33)

and θ(k) is the timer defined by (9).
Proof: By feedback gains (33) and timer (9), we have

Wi(k) = Ki(k)Ui(k), k = 0, . . . , L− 1, i ∈ I[1, N ] (34)

Substituting (34) into (31), it arrives
Ξi,1(k) ∗ ∗ ∗

0 −γ2I ∗ ∗
ÃikWi(k) Eik −Qi(k + 1) ∗
C̃ikWi(k) Fik 0 −I

 ≺ 0 (35)

In addition, by (31), it yields

Qi(k)−W⊤
i (k)−Wi(k) ≺ 0 (36)
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which means that Wi(k) is of full rank. Moreover, as Qi(k)
is strictly positive definite, we also have

(Qi(k)−Wi(k))
⊤Q−1

i (k)(Qi(k)−Wi(k)) ≽ 0 (37)

which is equivalent to

W⊤
i (k)Q−1

i (k)Wi(k) ≽ W⊤
i (k) +Wi(k)−Qi(k) (38)

It follows that
−W⊤

i (k)Q−1
i (k)Wi(k) ∗ ∗ ∗
0 −γ2I ∗ ∗

ÃikWi(k) Eik −Qi(k + 1) ∗
C̃ikWi(k) Fik 0 −I

 ≺ 0

which equals to
−Q−1

i (k) ∗ ∗ ∗
0 −γ2I ∗ ∗

Ãik Eik −Qi(k + 1) ∗
C̃ik Fik 0 −I

 ≺ 0 (39)

Pre- and post-multiplying diag{I, I,Q−1(k + 1), I} and
letting Pi(k) = Q−1

i (k), it can be equivalently expressed as
−Pi(k) ∗ ∗ ∗

0 −γ2I ∗ ∗
Pi(k + 1)Ãik Pi(k + 1)Eik −Pi(k + 1) ∗

C̃ik Fik 0 −I

 ≺ 0

Moreover, (32) leads to Pi(0) − Pj(L) ≺ 0, i ∈
PA (j), j ∈ A (L, τ). Therefore, by Theorem 4, closed-loop
system (30) is GUAS with ω(k) = 0 and has an ℓ2-gain γ.

Remark 3: In Theorem 5, the designed controller gains
are both mode-dependent and time-dependent, that is virtual-
clock-dependent. The feedback gain at each instant is chosen
not only based on the activated mode, but also dependent
on the timer θ(k). For each subsystem, the controller gain
actually has L values for selection for different steps in an L-
step sequence. Thus, in order to implement this virtual-clock-
dependent controller, a virtual clock CL needs to be equipped
to monitor the value of timer θ(k) to select the proper gain.

Two special cases are considered in the sequel. First, if
we only consider constant mode-dependent feedback gains for
subsystems, the following corollary can be derived.

Corollary 2: Given a scalar γ > 0 and consider system (23)
with σ(k) ∈ Dτ , if there exist a scalar L ≥ τ and symmetric
matrix sequences Qi : I[0, L] → Sn≻0, i ∈ A (L, τ), matrices
Ui ∈ Rm×n, Wi ∈ Rn×n, i ∈ I[1, N ] such that

Ξi(k) ≺ 0, i ∈ A (L, τ), k = 0, . . . , L− 1 (40)
Qj(L)−Qi(0) ≺ 0, i ∈ PA (j), j ∈ A (L, τ) (41)

where

Ξi(k) =


Qi(k)−W⊤

i −Wi ∗ ∗ ∗
0 −γ2I ∗ ∗

AikWi +BikUi Eik −Qi(k + 1) ∗
CikWi +DikUi Fik 0 −I


then closed-loop system (30) is GUAS with ω(k) = 0 and
has an ℓ2-gain γ, where mode-dependent feedback gains Ki,
i ∈ I[1, N ] are

Ki = UiW
−1
i , i ∈ I[1, N ] (42)

TABLE IV
ℓ2-INDUCED GAINS OF THE CLOSED-LOOP SYSTEM (C.G.: COMMON

GAIN METHOD; M.D.: MODE-DEPENDENT METHOD; V.C.:
VIRTUAL-CLOCK METHOD )

C.G. M.D. V.C. (L = 2) V.C. (L = 3) V.C. (L = 4) V.C. (L = 5)
γ∗ 3.2586 3.0047 3.0041 2.9936 2.9914 2.9908

Proof: Just let Wi(k) = Wi, Ui(k) = Ui, ∀k ∈ I[1, L],
in Theorem 5, to complete the proof.

Lastly, if the switching signal cannot be detected online
which means σ(k) is not available, a common feedback control
gain valid for all modes has to be designed.

Corollary 3: Given a scalar γ > 0 and consider system (23)
with σ(k) ∈ Dτ , if there exist a scalar L ≥ τ and symmetric
matrix sequences Qi : I[0, L] → Sn≻0, i ∈ A (L, τ), matrices
U ∈ Rm×n, W ∈ Rn×n such that

Ξi(k) ≺ 0, i ∈ A (L, τ), k = 0, . . . , L− 1 (43)
Qj(L)−Qi(0) ≺ 0, i ∈ PA (j), j ∈ A (L, τ) (44)

where

Ξi(k) =


Qi(k)−W⊤ −W ∗ ∗ ∗

0 −γ2I ∗ ∗
AikW +BikU Eik −Qi(k + 1) ∗
CikW +DikU Fik 0 −I


then closed-loop system (30) is GUAS with ω(k) = 0 and has
an ℓ2-gain γ, where common feedback gain K are

K = UW−1 (45)

Proof: Just let W = Wi, U = Ui, ∀i ∈ I[1, N ], in
Corollary 2, to complete the proof.

Example 4: Consider switched system (23) with the follow-
ing system matrices:

A1 =

[
−0.92 −0.34
1.0350 −0.31

]
, A2 =

[
−0.92 −0.34
1.0350 −0.31

]
B1 =

[
−0.52
0.40

]
, B2 =

[
0.85
0.05

]
, C⊤

1 =

[
−0.49
0.34

]
C2 =

[
0.67 −0.42

]
, D1 = 1.44, D2 = −0.36

E1 =

[
0.90
0.97

]
, E2 =

[
0.06
−0.08

]
, F1 = F2 = 0

The minimum dwell time is assumed to be τmin = 1.
In order to show the advantages of virtual clock approach,
Theorem 5, Corollary 2 and Corollary 3 are used to design vir-
tual clock-dependent, mode-dependent and common feedback
controller respectively to minimize the ℓ2-gain of the closed-
loop system. The computation results are shown in Table IV.
In Table IV, it can be seen that the virtual-clock-dependent
controller has better performances than mode-dependent and
common controllers since it yields smaller ℓ2-induced gains
for the closed-loop system. The common-gain controller has
the largest and most conservative design result, however, it
does not need any virtual clock or mode activation detection,
which is easy to be implemented in practice. Additionally, for
virtual-clock-dependent controller, a larger L can lead to a
better H∞ performance.
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VI. CONCLUSIONS

Based on the novel virtual clock conception introduced
in this paper, two necessary and sufficient conditions for
discrete-time switched linear systems under minimum dwell-
time constraint are proposed. The lifted version is able to
maintain the convex feature which plays a crucial role for
some further extensions. The non-conservativeness in stability
analysis can be obtained as long as the length of the virtual
clock is sufficiently long. Then, taking advantage of the
convexity in the lifted condition, the extensions to ℓ2-gain
computation and H∞ control problems are made. It shows
that the virtual clock method outperforms the mode-dependent
method and common gain control method. Several numerical
examples are given to illustrate the theoretical findings in this
paper. This paper presents a framework of virtual clock to
improve the stability analysis for switched systems under dwell
time constraint. It should be mentioned that, according to Table
I, the computational cost significantly increases as the number
of modes and length of the cycle of virtual clock, that is the
L, grow, how to reduce the computational complexity and
make it applicable for switched system with large amounts
of subsystems needs further studies. Moreover, how to select
appropriate L to avoid unnecessary computational cost also
needs further investigations in the future.
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