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Abstract. Neural networks have been widely used to solve complex
real-world problems. Due to the complex, nonlinear, non-convex nature
of neural networks, formal safety and robustness guarantees for the be-
haviors of neural network systems are crucial for their applications in
safety-critical systems. In this paper, the reachable set estimation and
safety verification problems for Nonlinear Autoregressive-Moving Aver-
age (NARMA) models in the forms of neural networks are addressed.
The neural networks involved in the model are a class of feed-forward
neural networks called Multi-Layer Perceptrons (MLPs). By partitioning
the input set of an MLP into a finite number of cells, a layer-by-layer
computation algorithm is developed for reachable set estimation of each
individual cell. The union of estimated reachable sets of all cells forms
an over-approximation of the reachable set of the MLP. Furthermore,
an iterative reachable set estimation algorithm based on reachable set
estimation for MLPs is developed for NARMA models. The safety veri-
fication can be performed by checking the existence of non-empty inter-
sections between unsafe regions and the estimated reachable set. Several
numerical examples are provided to illustrate the approach.
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1 Introduction

Artificial neural networks have been widely used in machine learning and artifi-
cial intelligence systems. Applications include adaptive control [14, 10], pattern
recognition [26, 19], game playing [27], autonomous vehicles [6], and many oth-
ers. Neural networks are trained over finite amounts of input and output data,
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and are expected to be able to generalize to produce desirable outputs for given
inputs even including previously unseen inputs. Though neural networks have
been showing effectiveness and powerful ability in resolving complex problems,
they are confined to systems that comply only to the lowest safety integrity lev-
els since, most of the time, a neural network is viewed as a black box without
effective methods to assure robustness or safety specifications for its outputs.
For nonlinear dynamic systems whose models are difficult or even impossible to
establish, using neural network models that are inherently derived from input
and output data to approximate the nonlinear dynamics is an efficient and prac-
tical way. One standard employment of neural networks is to approximate the
Nonlinear Autoregressive-Moving Average (NARMA) model which is a popular
model for nonlinear dynamic systems. However, once the NARMA model in the
form of neural networks is established, a problem naturally arises: How to com-
pute the reachable set of an NARMA model that is essentially expressed by neural
networks and, based on that, how to verify properties of an NARMA model? For
computing or estimating the reachable set for a nonlinear system starting from an
initial set and with an input set, the numbers of inputs and initial state that need
to be checked are infinite, which is impossible only by performing experiments.
Moreover, it has been observed that neural networks can react in unexpected and
incorrect ways to even slight perturbations of their inputs [28], which could result
in unsafe systems. Hence, methods that are able to provide formal guarantees
are in a great demand for verifying specifications or properties of systems involv-
ing neural networks. Verifying neural networks is a hard problem, even simple
properties about them have been proven NP-complete problems [17]. The diffi-
culties mainly come from the presence of activation functions and the complex
structures, making neural networks large-scale, nonlinear, non-convex and thus
incomprehensible to humans. Until now, only few results have been reported
for verifying neural networks. The verification for feed-forward multi-layer neu-
ral networks is investigated based on Satisfiability Modulo Theory (SMT) in [13,
24]. In [23] an abstraction-refinement approach is proposed for verification of spe-
cific networks known as Multi-Layer Perceptrons (MLPs). In [40, 17], a specific
kind of activation functions called Rectified Linear Unit (ReLU) is considered
for the verification problem of neural networks. A simulation-based approach is
developed in [38], which turns the reachable set estimation problem into a neu-
ral network maximal sensitivity computation problem that is described in terms
of a chain of convex optimization problems. Additionally, some recent reach-
able set/state estimation results are reported for neural networks [45, 44, 42, 47,
29], these results that are based on Lyapunov functions analogous to stability
[34, 36, 35, 43, 41, 32, 33] and reachability analysis of dynamical systems [39, 37],
certainly have potentials to be further extended to safety verification.

In this paper, we will use neural networks to represent the forward dynamics
of the nonlinear systems that are in the form of NARMA models. Due to the non-
convex and nonlinearity existing in the model and inspired by some simulation-
based ideas for verification problems [8, 9, 2, 3], a simulation-based approach will
be developed to estimate the reachable set of state responses generated from a
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NARMA model. The core step of the approach is the reachable set estimation for
a class of feed-forward neural networks called Multi-Layer Perceptron (MLP).
By discretizing the input space of an MLP into a finite-number of regularized
cells, a layer-by-layer computation process is developed to establish an over-
approximation of the output set for each individual cell. The union of output set
of all cells is the reachable set estimation for the MLP with respect to a given
input set. On the basis of the reachable set estimation method for MLPs, the
reachable set over any finite-time interval for an NARMA model can be estimated
in a recursive manner. Safety verification can be performed if an estimation for
the reachable set of an NARMA model is established, by checking the existence
of intersections between the estimated reachable set and unsafe regions.

The remainder of this paper is organized as follows. Neural network model
of nonlinear systems, that is the NARMA model, is introduced in Section 2.
The problem formulation is presented in Section 3. The main results, reachable
set estimation for MLPs and NARMA models, are given in Sections 4 and 5,
respectively. An example for magnetic levitation systems is presented in Section
6. Conclusions are made in Section 7.

Notations: R denotes the field of real numbers, Rn stands for the vector space
of all n-tuples of real numbers, Rn×n is the space of n × n matrices with real
entries. ‖x‖∞ stands for infinity norm for vector x ∈ Rn defined as ‖x‖∞ =
maxi=1,...,n |xi|. A> denotes the transpose of matrix A. For a set A, |A| denotes
its cardinality.

2 Neural Network Models of Nonlinear Dynamic Systems

Neural networks are commonly used for data-driven modeling for nonlinear sys-
tems. One standard model to represent discrete-time nonlinear systems is the
Nonlinear Autoregressive-Moving Average (NARMA) model. Given a discrete-
time process with past states x(k),x(k−1), . . . ,x(k−dx) and inputs u(k),u(k−
1), . . . ,u(k − du), an NARMA model is in the form of

x(k + 1) = f (x(k),x(k − 1), . . . ,x(k − dx),u(k),u(k − 1), . . . ,u(k − du)) , (1)

where the nonlinear function f(·) needs to be approximated by training neural
networks. The initial state of NARMA model (1) is x(0), . . . ,x(dx), which is
assumed to be in set X0 × · · · × Xdx

, and the input set is U . We assume that
the initial state {x(0), . . . ,x(dx)} ∈ X0× · · · ×Xdx

and input satisfies u(k) ∈ U ,
∀k ∈ N.

A neural network consists of a number of interconnected neurons. Each neu-
ron is a simple processing element that responds to the weighted inputs it re-
ceived from other neurons. In this paper, we consider the most popular and
general feed-forward neural network, MLP. Generally, an MLP consists of three
typical classes of layers: An input layer, that serves to pass the input vector to the
network, hidden layers of computation neurons, and an output layer composed
of at least a computation neuron to produce the output vector.
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The action of a neuron depends on its activation function, which is described
as

yi = h
(∑n

j=1
ωijvj + θi

)
, (2)

where vj is the jth input of the ith neuron, ωij is the weight from the jth input
to the ith neuron, θi is called the bias of the ith neuron, yi is the output of
the ith neuron, h(·) is the activation function. The activation function is gener-
ally a nonlinear function describing the reaction of ith neuron with inputs vj ,
j = 1, · · · , n. Typical activation functions include Rectified Linear Unit (ReLU),
logistic, tanh, exponential linear unit, linear functions, etc. In this work, our
approach aims at dealing with activation functions regardless of their specific
forms, only the following monotonic assumption needs to be satisfied.

Assumption 1 For any v1 ≤ v2, the activation function satisfies h(v1) ≤ h(v2).

Assumption 1 is a common property that can be satisfied by a variety of acti-
vation functions. For example, it is easy to verify that the most commonly used
such as logistic, tanh, ReLU, all satisfy Assumption 1.

An MLP has multiple layers, each layer `, 1 ≤ ` ≤ L, has n[`] neurons. In
particular, layer ` = 0 is used to denote the input layer and n[0] stands for the
number of inputs in the rest of this paper, and of course, n[L] stands for the
last layer, that is the output layer. For a neuron i, 1 ≤ i ≤ n[`] in layer `, the
corresponding input vector is denoted by v[`] and the weight matrix is

W[`] =
[
ω

[`]
1 , . . . ,ω

[`]

n[`]

]>
, (3)

where ω
[`]
i is the weight vector. The bias vector for layer ` is

θ[`] =
[
θ
[`]
1 , . . . , θ

[`]

n[`]

]>
The output vector of layer ` can be expressed as

y[`] = h`(W
[`]v[`] + θ[`]), (4)

where h`(·) is the activation function for layer `.
For an MLP, the output of `−1 layer is the input of ` layer, and the mapping

from the input of input layer v[0] to the output of output layer y[L] stands for
the input-output relation of the MLP, denoted by

y[L] = H(v[0]), (5)

where H(·) , hL ◦ hL−1 ◦ · · · ◦ h1(·).
According to the Universal Approximation Theorem [12], it guarantees that,

in principle, such an MLP in (5), namely the function F (·), is able to approximate
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any nonlinear real-valued function. To use MLP (5) to approximate NARMA
model (1), we can let the input of (5) as

v[0] = [x>(k),x>(k−1), . . . ,x>(k−dx),u>(k),u>(k−1), . . . ,u>(k−du)]>, (6)

and output as

y[L] = x(k + 1). (7)

With the input and output data of original nonlinear systems, an approxi-
mation of NARMA model (1) can be obtained by standard feed-forward neural
network training process. Despite the impressive ability of approximating non-
linear functions, much complexities represent in predicting the output behaviors
of MLP (5) as well as NARMA model (1) because of the nonlinearity and non-
convexity of MLPs. In the most of real applications, an MLP is usually viewed
as a black box to generate a desirable output with respect to a given input. How-
ever, regarding property verifications such as the safety verification, it has been
observed that even a well-trained neural network can react in unexpected and
incorrect ways to even slight perturbations of their inputs, which could result
in unsafe systems. Thus, to validate the neural network NARMA model for a
nonlinear dynamics, it is necessary to compute the reachable set estimation of
the model, which is able to cover all possible values of output, to assure that
the state trajectories of the model will not attain unreasonable values that is
inadmissible for the original system. It is also necessary to estimate all possible
values of state for safety verification of a neural network NARMA model.

3 Problem Formulation

Consider initial set X0×· · ·×Xdx
and input set U , the reachable set of NARMA

model in the form of (1) is defined as follows.

Definition 1. Given an NARMA model in the form of (1) with initial set X0×
· · · × Xdx

and input set U , the reachable set at a time instant k is:

Xk , {x(k) | x(k) satisfies (1) and {x(0), · · · ,x(dx)} ∈ X0 × . . .×Xdx ,

u(k) ∈ U , ∀k ∈ N}, (8)

and the reachable set over time interval [0, kf ] is defined by

X[0,kf ] =
⋃kf

s=0
Xs. (9)

Since MLPs are often large, nonlinear, and non-convex, it is extremely dif-
ficult to compute the exact reachable set Xk and X[0,kf ] for an NARMA model
with MLPs. Rather than directly computing the exact output reachable set
for an NARMA model, a more practical and feasible way is to derive an over-
approximation of Xk, which is called reachable set estimation.
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Definition 2. A set X̃k is called a reachable set estimation of NARMA model
(1) at time instant k, if Xk ⊆ X̃k holds and, moreover, X̃[0,kf ] =

⋃k
s=0 X̃s is a

reachable set estimation for NARMA model (1) over time interval [0, kf ].

Based on Definition 2, the problem of reachable set estimation for an NARMA
model is given as below.

Problem 1. How does one find the set X̃k such that Xk ⊆ X̃k, given a bounded
initial set X0 × . . .×Xdx

and an input set U and an NARMA model (1)?

In this work, we will focus on the safety verification for NARMA models. The
safety specification for output is expressed by a set defined in the state space,
describing the safety requirement.

Definition 3. Safety specification S formalizes the safety requirements for state
x(k) of NARMA model (1), and is a predicate over state x of NARMA model
(1). The NARMA model (1) is safe over time interval [0, kf ] if and only if the
following condition is satisfied:

X[0,kf ] ∩ ¬S = ∅, (10)

where ¬ is the symbol for logical negation.

Therefore, the safety verification problem for NARMA models is stated as
follows.

Problem 2. How can the safety requirement in (10) be verified given an NARMA
model (1) with a bounded initial set X0 × . . . × Xdx and an input set U and a
safety specification S?

Before ending this section, a lemma is presented to show that the safety
verification of an MLP can be relaxed by checking with the over-approximation
of output reachable set.

Lemma 1. Consider an NARMA model (1) and a safety specification S, the
NARMA model is safe in time interval [0, kf ] if the following condition is satisfied

X̃[0,kf ] ∩ ¬S = ∅, (11)

where X[0,kf ] ⊆ X̃[0,kf ].

Proof. Since X[0,kf ] ⊆ X̃[0,kf ], condition (11) directly leads to X[0,kf ] ∩ ¬S = ∅.
The proof is complete.

Lemma 1 implies that it is sufficient to use the estimated reachable set for
the safety verification of an NARMA model, thus the solution of Problem 1 is
also the key to solve Problem 2.
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4 Reachable Set Estimation for MLPs

As (5)–(7) in previous section, the state of an NARMA model is computed
through an MLP recursively. Therefore, the first step for the reachable set esti-
mation for an NARMA model is to estimate the output set of MLP (5).

Given an MLP y[L] = H(v[0]) with a bounded input set V, the problem is
how to compute a set Y as below:

Y , {y[L] | y[L] = H(v[0]), v[0] ∈ V ⊂ Rn}. (12)

Due to the complex structure and nonlinearities in activation functions, the
estimation of output reachable set of MLP represents much difficulties if only
using analytical methods. One possible way to circumvent those difficulties is to
employ the information produced by a finite number of simulations.

Definition 4. Given a set V ⊂ Rn, a finite collection of sets P = {P1,P2, . . . ,PN}
is said to be a partition of V if (1) Pi ⊆ V; (2) int(Pi) ∪ int(Pj) = ∅; (3)

V ⊆
⋃N

i=1 Pi, ∀i ∈ {1, . . . , N}. Each elements Pi of partition P is called a cell.

In this paper, we use cells defined by intervals which are given as follows: For
any bounded set V ⊂ Rn, we have V ⊆ V̄,where V̄ = {v ∈ Rn | v ≤ v ≤ v̄}, in
which v and v̄ are defined as the lower and upper bounds of elements of v in V as
v = [infv∈V(v1), . . . , infv∈V(vn)]> and v̄ = [supv∈V(v1), . . . , supv∈V(vn)]>, re-
spectively. Then, we are able to partition interval Ii = [infv∈V(vi), supv∈V(vi)],
i ∈ {1, . . . , n} into Mi segments as Ii,1 = [vi,0, vi,1], Ii,2 = [vi,1, vi,2], . . .,
Ii,Mi

= [vi,Mi−1, vi,Mi
], where vi,0 = infv∈V(vi), vi,Mi

= supv∈V(vi) and vi,n =

vi,0 +
m(vi,Mi

−vi,0)
Mi

, m ∈ {0, 1, . . . ,Mi}. The cells then can be constructed as

Pi = I1,m1
×· · ·×In,mn

, i ∈ {1, 2, . . . ,
∏n

s=1Ms}, {m1, . . . ,mn} ∈ {1, . . . ,M1}×
· · · × {1, . . . ,Mn}. To remove redundant cells, we have to check if the cell has
empty intersection with V. Cell Pi should be removed if Pi ∩ V = ∅. The cell
construction process is summarized by cell function in Algorithm 1.

With the cells constructed by cell function, the next step is to develop a
function that is able to estimate the output reachable set for each individual cell
as the input to the MLP. A layer-by-layer approach is developed.

Theorem 1. For a single layer y = h(Wv+θ), if the input set is a cell described
by I1 × · · · × Inv

where Ii = [vi, v̄i], i ∈ {1, . . . , nv}, the output set can be over-
approximated by a cell in the expression of intervals I1 × · · · × Iny

, where Ii,
i ∈ {1, . . . , ny} can be computed by

Ii = [h(zi + θi), h(z̄i + θi)], (13)

where zi =
∑nv

j=1 gij, z̄i =
∑nv

j=1 ḡij with g
ij

and ḡij defined by

g
ij

=

{
ωijvj ωij ≥ 0
ωij v̄j ωij < 0

, ḡij =

{
ωij v̄j ωij ≥ 0
ωijvj ωij < 0

. (14)
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Algorithm 1 Partition an input set

Require: Set V, partition numbers Mi, i ∈ {1, . . . , n}
Ensure: Partition P = {P1,P2, . . . ,PN}
1: function cell(V, Mi, i ∈ {1, . . . , n})
2: vi,0 ← infv∈V(vi), vi,Mi ← supv∈V(vi)
3: for i = 1 : 1 : n do
4: for j = 1 : 1 : Mi do

5: vi,j ← vi,0 +
j(vi,Mi

−vi,0)

Mi

6: Ii,j ← [vi,j−1, vi,j ]
7: end for
8: end for
9: Pi ← I1,m1 × · · · × In,mn , {m1, . . . ,mn} ∈ {1, . . . ,M1} × · · · × {1, . . . ,Mn}

10: if Pi ∩ V = ∅ then
11: Remove Pi

12: end if
13: return P = {P1,P2, . . . ,PN}
14: end function

Proof. By (14), one can obtain that

zi = min
v∈I1×···×Inv

(∑nv

j=1
ωijvj

)
, (15)

z̄i = max
v∈I1×···×Inv

(∑nv

j=1
ωijvj

)
. (16)

Consider neuron i, its output is yi = h
(∑nv

j=1 ωijvj + θi

)
. Under Assumption

1, we can conclude that

min
v∈I1×···×Inv

(
h
(∑nv

j=1
ωijvj + θi

))
= h(zi + θi), (17)

max
v∈I1×···×Inv

(
h
(∑nv

j=1
ωijvj + θi

))
= h(z̄i + θi). (18)

Thus, it leads to

yi ∈ [h(zi + θi), h(z̄i + θi)] = Ii. (19)

and therefore, y ∈ I1 × · · · × Iny
. The proof is complete.

Theorem 1 not only demonstrates the output set of one single layer can be
approximated by a cell if the input set is a cell, it also gives out an efficient way
to calculate the cell, namely by (13) and (14). For multi-layer neural networks,
Theorem 1 plays the key role for the layer-by-layer approach. For an MLP which
essentially has v[`] = y[`−1], ` = 1, . . . , L, if the input set is a set of cells, Theorem
1 assures the input set of every layer can be over-approximated by a set of cells,
which can be computed by (13) and (14) layer-by-layer. The output set of layer
L is thus an over-approximation of reachable set of the MLP.

Function reachMLP given in Algorithm 2 illustrates the layer-by-layer method
for reachable set estimation for an MLP.
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Algorithm 2 Reachable set estimation for MLP

Require: Weight matrices W[`], bias θ[`], ` ∈ {1, . . . , L}, set V, partition numbers
Mi, i ∈ {1, . . . , n}

Ensure: Reachable set estimation Ỹ.
1: function reachMLP(W[`], θ[`], ` ∈ {1, . . . , L}, V, Mi, i ∈ {1, . . . , n})
2: P ← cell(V,Mi, i ∈ {1, . . . , n})
3: for p = 1 : 1 : |P| do
4: I [1]1 × · · · × I

[1]

n[1] ← Pp

5: for j = 1 : 1 : L do
6: for i = 1 : 1 : n[j] do

7: g
ij
←
{
ωijvj ωij ≥ 0

ωij v̄j ωij < 0
, ḡij ←

{
ωij v̄j ωij ≥ 0
ωijvj ωij < 0

8: zi ←
∑nv

j=1 gij , z̄i ←
∑nv

j=1 ḡij

9: I [j+1]
i ← [hj(zi + θi), hj(z̄i + θi)]

10: end for
11: end for
12: Ỹp ← I [L]

1 × · · · × I [L]

n[L]

13: end for
14: Ỹ ←

⋃|P|
p=1 Ỹp

15: return Ỹ
16: end function

Example 1. An MLP with 2 inputs, 2 outputs and 1 hidden layer consisting of 5
neurons is considered. The activation function for the hidden layer is choosen as
tanh function and purelin function is for the output layer. The weight matrices
and bias vectors are given as below:

W[1] =


0.2075 −0.7128
0.2569 0.7357
−0.6136 −0.3624
0.0111 0.1393
−1.0872 −0.2872

 , θ[1] =


−1.1829
−0.6458
0.4619
−0.0499
0.3405

 ,
W[2] =

[
−0.5618 −0.0851 −0.4529 −0.8230 0.5651
0.7861 −0.0855 1.1041 1.6385 −0.3859

]
, θ[2] =

[
−0.2489
−0.1480

]
.

In this example, the input set is considered as below:

V = {v ∈ R2 | ‖v‖∞ ≤ 1}.

Then, the partition numbers are chosen to be M1 = M2 = 20, which means
there are in total 400 cells, Pi, i ∈ {1, . . . , 400}, produced for the reachable set
estimation.

Executing function reachMLP for input set V, the estimated output reachable
set is given in Figure 1, in which it can be seen that 400 reachtubes are obtained
and the union of them is the over-approximation of reachable set.

Moreover, we choose a different partition numbers discretizing state space
to show how the choice of partitioning input set affects the estimation outcome.
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Fig. 1. Output reachable set estimation with input set V = {v ∈ R2 | ‖v‖∞ ≤ 1} and
partition number M1 = M2 = 20. 400 reachtubes are computed for the reachable set
estimation of the MLP.
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Explicitly, larger partition numbers will produce more cells and generate preciser
approximations of input sets and are supposed to achieve preciser estimations.
Here, we adjust the partition numbers from 10 to 50 for the different estimation
results. With this finer discretization, more computation efforts are required for
running function reachMLP, but a tighter estimation for the reachable set can be
obtained. The reachable set estimations are shown in Figure 2. Comparing those
results, it can be observed that larger partition numbers can lead to a better
estimation result at the expense of more computation efforts. The computation
time and number of reachtubes with different partition numbers are listed in
Table 1.

−0.4 −0.2 0 0.2 0.4 0.6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

v
1

v
2

 

 

Fig. 2. Output reachable set estimation with input set V = {v ∈ R2 | ‖v‖∞ ≤ 1}
and partition number M1 = M2 = 10 (green + blue + cyan + magenta + yellow),
M1 = M2 = 20 (blue + cyan + magenta + yellow), M1 = M2 = 30 (cyan + magenta
+ yellow), M1 = M2 = 40 (magenta + yellow) and M1 = M2 = 50 (yellow). It can be
observed that tighter estimations can be obtained with larger partition numbers. 5000
random outputs (red spots) from input set are all located in the estimated reachable
set.
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Table 1. Computation time and number of reachtubes with different partition numbers

Partition Number Computation Time Number of Reachtubes

M1 = M2 = 10 0.062304 seconds 100

M1 = M2 = 20 0.074726 seconds 400

M1 = M2 = 30 0.142574 seconds 900

M1 = M2 = 40 0.251087 seconds 1600

M1 = M2 = 50 0.382729 seconds 2500

To validate the result, 5000 random outputs are generated, it is clear to see
in Figure 2 that all the outputs are included in the estimated reachable set,
showing the effectiveness of the proposed approach.

5 Reachable Set Estimation for NARMA Models

Based on the developed approach for reachable set estimation for MLP, this sec-
tion will extend the result to NARMA models. As in previous sections, NARMA
models employ MLP to approximate the nonlinear relation between x(k),x(k−
1), . . . ,x(k − dx),u(k),u(k − 1), . . . ,u(k − du) and state x(k + 1). Without loss
of generality, we assume dx ≥ du, thus the model is valid for any k ≥ dx. Thus,
with the aid of reachable set estimation results for MLP, the reachable set of
NARMA (1) at time instant k can be estimated by recursively using functions
cell and reachMLP for k − dx times.

Since the reachable sets Xk, k ∈ {0, 1, . . . , dx}, are given as initial set, let us
start with k = dx + 1. In the employment of function reachMLP with input of
X0× . . .×Xdx

and Udu , X̃dx+1 = reachMLP(W[`],θ[`], ` ∈ {1, . . . , L},X0× . . .×
Xdx ,Mi, i ∈ {1, . . . , n[0]}) is an over-approximation of Xdx+1, namely Xdx+1 ⊆
X̃dx+1. Then, repeating using function reachMLP from dx+1 to kf , we can obtain
an over-approximation of Xk, k = dx + 1, . . . , kf , and X[0,kf ].

Proposition 1. Consider NARMA model (1) with initial set X0× . . .×Xdx
and

input set U , the reachable set Xk, k > dx can be recursively over-approximated
by

X̃k =reachMLP(W[`],θ[`], ` ∈ {1, . . . , L},
X̃k−dx−1 × . . .× X̃k−1 × Udu ,Mi, i ∈ {1, . . . , n[0]}), (20)

where X̃k = Xk, k ∈ {0, . . . , dx}. the reachable set over time interval [0, kf ] can
be estimated by

X̃[0,kf ] =
⋃kf

s=0
X̃s. (21)

The iterative algorithm for estimating reachable set Xk and Xkf
is summa-

rized as function reachNARMA in Algorithm 3.
Function reachNARMA is sufficient to solve the reachable set estimation prob-

lem for an NARMA model, that is Problem 1. Then, we can move forward to
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Algorithm 3 Reachable set estimation for NARMA model

Require: Weight matricesW [`], bias θ[`], ` = 1, . . . , L, initial set X0× . . .×Xdx , input
set U , partition numbers Mi, i ∈ {1, . . . , n[0]}

Ensure: Reachable set estimation Xk, X[0,kf ].

1: function reachNARMA(W [`], θ[`], ` = 1, . . . , L, X0 × . . . × Xdx , U , Mi, i ∈
{1, . . . , n[0]})

2: for k = du + 1 : 1 : kf do
3: V ← Xk−du−1 × . . .×Xk−1 × Udu

4: Xk ← reachMLF(W [`],θ[`], ` = 1, . . . , L,V,Mi, i ∈ {1, . . . , n[0]}.
5: end for
6: X[0,kf ] ←

⋃kf

s=0 Xs

7: return Xk, k = 0, 1 . . . , kf , X[0,kf ]

8: end function

Problem 2, the safety verification problem for an NARMA model with a given
safety specification S over a finite interval [0, kf ], with the aid of estimated
reachable set X[0,kf ]. Given a safety specification S, the empty intersection be-

tween over-approximation X̃[0,kf ] and ¬S, namely X̃[0,kf ] ∩ ¬S = ∅, naturally

leads to X[0,kf ] ∩ ¬S = ∅ due to X[0,kf ] ⊆ X̃[0,kf ]. The safety verification result
is summarized by the following proposition.

Proposition 2. Consider NARMA model (1) with initial set X0 × . . . × Xdx
,

input set U , and a safety specification S, the NARMA model (1) is safe in

interval [0, kf ], if X̃[0,kf ] ∩ ¬S = ∅, where X̃[0,kf ] = reachNARMA(W [`],θ[`], ` =

1, . . . , L,X0 × . . .×Xdx
,U ,Mi, i ∈ {1, . . . , n[0]}) obtained by Algorithm 3.

Function verifyNARMA is developed based on Proposition 2 for Problem 2, the
safety verification problem for NARMA model. If function verifyNARMA returns
SAFE then the NARMA model is safe. If it returns UNCERTAIN, caused by
the fact X̃[0,kf ], that means the safety property is unclear for this case.

A numerical example is provided to show the effectiveness of our developed
approach.

Example 2. In this example, we consider an NARMA model as below:

x(k + 1) = f(x(k),u(k)), (22)

where x(k),u(k) ∈ R. We use an MLP with 2 inputs, 1 outputs and 1 hidden
layer consisting of 5 neurons to approximate f with weight matrices and bias
vectors below:

W[1] =


0.1129 0.4944
2.2371 0.4389
−1.1863 −0.7365
0.2965 0.3055
−0.6697 0.5136

 , θ[1] =


−13.8871
−8.2629
5.8137
−3.2035
−0.6697

 ,
W[2] =

[
−3.3067 1.3905 −0.6422 2.5221 1.8242

]
, θ[2] =

[
5.8230

]
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Algorithm 4 Safety verification for NARMA model

Require: Weight matricesW [`], bias θ[`], ` = 1, . . . , L, initial set X0× . . .×Xdx , input
set U , partition numbers Mi, i ∈ {1, . . . , n[0]}, safety specification S

Ensure: SAFE or UNCERTAIN.
1: function verifyNARMA(W [`], θ[`], ` = 1, . . . , L, X0 × . . . × Xdx , U , Mi, i ∈
{1, . . . , n[0]}, S)

2: X[0,kf ] ← reachNARMA(W [`],θ[`], ` = 1, . . . , L,X0 × . . . × Xdx ,U ,Mi, i ∈
{1, . . . , n[0]})

3: if X[0,kf ] ∩ S = ∅ then
4: return SAFE
5: else
6: return UNCERTAIN
7: end if
8: end function

The activation function for the hidden layer is choose tanh function and
purelin function is for the output layer. The initial set and input set are given
by the following set

X0 = {x(0) ∈ R | −0.2 ≤ x(0) ≤ 0.2}, (23)

U = {u(k) ∈ R | 0.8 ≤ u(k) ≤ 1.2, ∀k ∈ N}. (24)

We set the partition numbers to be M1 = M2 = 10, where M1 is for input
u and M2 is for state x. The time horizon for the reachable set estimation is
set to be [0, 50]. Using function reachNARMA, the reachable set can be estimated,
which is shown in Figure 3. To show the effectiveness of our proposed approach,
we randomly generate 100 state trajectories that are all within the estimated
reachable set.

Furthermore, with the estimated reachable set, the safety verification can be
easily performed. For example, if the safety region is assumed to be S = {x ∈
R | x ≤ 16}, it is easy to verify that X̃[0,50] ∩ ¬S = ∅ which means the NARMA
model is safe.

6 Magnetic Levitation Systems (Maglev)

6.1 Brief Introduction

Magnetic Levitation Systems, which are called Maglev Systems in short, are
systems in which an object is suspended exclusively by the presence of magnetic
fields. In such schemes, the force exerted by the presence of magnetic fields is
able to counteract gravity and any other forces acting on the object [15]. In
order to achieve levitation, there are two principle concerns. The first concern is
to exert a sufficient lifting force with which to counteract gravity and the sec-
ond concern is stability. Once levitation has been achieved, it is critical to ensure
that the system does not move into a configuration in which the lifting forces are
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Fig. 3. Reachable set estimation for NARMA model. Blue area is the estimated reach-
able set and red solid lines are 100 randomly generated state trajectories. All the
randomly generated state trajectories are in the reachable set estimation area.

neutralized [25]. However, attaining stable levitation is a considerably complex
task, and in his famous theorem, Samuel Earnshaw demonstrated that there is
no static configuration of stability for magnetic systems [7]. Intuitively, the insta-
bility of magnetic systems lies in the fact that magnetic attraction or repulsion
increases or decreases in relation to the square of distance. Thus, most control
strategies for Maglev Systems make use of servo-mechanisms [31] and a feedback
linearization [30] around a particular operating point of the complex nonlinear
differential equations [46] describing the sophisticated mechanical and electri-
cal dynamics. Despite their intrinsic complexity, these systems have exhibited
utility in numerous contexts and in particular Maglev System have generated
considerable scientific interest in transportation due to their ability to minimize
mechanical loss, allow faster travel [18], minimize mechanical vibration, and emit
low levels of noise[16]. Other application domains of such systems include wind
tunnel levitation [31], contact-less melting, magnetic bearings, vibrator isolation
systems, and rocket-guiding designs [11]. Consequently, Maglev Systems have
been extensively studied in control literature [15].
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Due to their unstable, complex, and nonlinear nature, it is difficult to build
a precise feedback control model for the dynamic behavior of complex Maglev
System. In most cases, a linearization of the nonlinear dynamics is susceptible
to a great deal of inaccuracy and uncertainty. As the system deviates from an
assumed operating point, the accuracy of the model deteriorates [1]. Addition-
ally, models based on simplifications are often unable to handle the presence
of disturbance forces. Thus, to improve control schemes, a stricter adherence
to the complex nonlinear nature of the Maglev Systems is needed. In the last
several years, neural network control systems have received significant attention
due to their ability to capture complex nonlinear dynamics and model nonlinear
unknown parameters [46].

In the control of magnetic levitation systems the nonlinear nature can be
modeled by a neural network that is able to describe the input-output nature
of the nonlinear dynamics [31]. Neural networks have shown the ability to ap-
proximate any nonlinear function to any desired accuracy [20]. Using the neural
network model of the plant we wish to control, a controller can be designed to
meet system specifications. While neural control schemes have been successful
in creating stable controllers for nonlinear systems, it is essential to demon-
strate that these systems do not enter undesirable states. As an example, in the
requirements for a Maglev train system developed in 1997 by the Japanese Min-
istry of transportation, the measurements of the 500 km/h train’s position and
speed could deviate by a maximum of 3 cm and 1 km/h, respectively, in order
to prevent derailment and contact with the railway [22]. As magnetic systems
become more prevalent in transportation and in other domains, the verification
of these systems is essential. Thus, in this example, we perform a reachable set
estimation of a NARMA neural network model (1) of a Maglev System.

6.2 Neural Network Model

The Maglev System we consider consists of a magnet suspended above an elec-
tromagnet where the magnet is confined to only moving in the vertical direction
[15]. Using the results of De Jésus et. al [15], the nonlinear equation of motion
for the system is

d2y(t)

dt2
= −g +

α

M

i2(t)

y(t)
− β

M

dy(t)

dt
, (25)

where y(t) is the vertical position of the magnet above the electromagnet in mm,
i(t), in Amperes, is the current flowing in the electromagnet, M is the mass of
the magnet, g is the gravitational constant, β is the frictional coefficient, and
α is the field strength constant. The frictional coefficient β is dictated by the
material in which the magnet moves. In our case, the magnet moves through air.
The field strength constant α is determined by the number of turns of wire in
our electromagnet and by the strength of the magnet being levitated [15].

To capture the nonlinear input-output dynamics of the system, we trained a
NARMA neural network (1) to predict the magnet’s future position values. In
order to predict the magnet’s future position values, two inputs are supplied to
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the network: the first is the past value of the current flowing in the electromagnet
i(k−1) and the second input is the magnet’s previous position value y(k−1). The
output of the neural network is the current position y(k). The network consists
of one hidden layer with eight neurons and an output layer with one neuron.
The transfer function of the first layer is tanh and purelin for the output layer.

The network is trained using a data set consisting of 4001 target position
values for the output and 4001 input current values. The Levenberg-Marquard
algorithm [21] is used to train the network using batch training. Using batch
training, the weights and biases of the NARMA model (1) are updated after
all the inputs and targets are supplied to the network and a gradient descent
algorithm is used to minimize error [4]. To avoid over-fitting the network, the
training data is divided randomly into three sets: the training set, which consists
of 2801 values, the validation set, which consists of 600 values, and a test set
which is the same size as the validation set. The training set is used to adjust
the weight and bias values of the network as well as to compute the gradient,
while the validation set is used to measure the network’s generalization. Training
of the networks ceases when the network’s generalization to input data stops
improving. The testing data does not take part into the training, but it is used
to check the performance of the net during and after training.

In this example, we set the minimum gradient to 10−7, and set the number
of validation checks to 6. Thus, training ceases if the error on the validation set
increases for 6 consecutive iterations or the minimum gradient achieves a value
of 10−7. In our case, the training stopped when the validation checks reached
its limit of 6, obtaining a performance of 0.000218. Initially, before the training
begins, the values of the weights, biases, and training set are initialized randomly.
Thus, the value of the weights and the biases may be different every time that
the network is trained. The weights and biases of the hidden layer are

W [1] =



−68.9367 −3.3477

−0.0802 −2.1460

0.1067 −3.7875

0.1377 −1.5763

−0.3954 −1.4477

−0.4481 −6.9485

0.0030 1.5819

5.9623 −5.5775


,θ[1] =



47.8492

2.2129

1.9962

−0.0091

−0.0727

−3.8435

1.7081

7.5619


and in the output layer, the weights and the biases are

W [2] =
[
−0.0054 −0.3285 −0.0732 −0.4019 −0.1588 −0.0128 0.5397 −0.0279

]
,

θ[2] =
[
0.1095

]
.

Once the NARMA network model (1) is trained and the weight and bias
values are adjusted to the values shown above, the reachable set estimation of
the system can be computed and a safety requirement S could be verified. This
computation is executed following the process described in the previous section.
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6.3 Reachable Set Estimation

In order to compute the reachable set and verify if the given specification is sat-
isfied, Algorithm 3 is employed. First, the reachable set estimation using 5 par-
titions is computed, followed by the reachable set estimation using 20 partitions.
After both reachable set estimations are calculated, 200 random trajectories are
generated and plotted into Figure 4.

The reachable set estimations and the random trajectories are computed with
an initial set and input set that are assumed to be given by

X0 = {x(0) ∈ R | 4.00 ≤ x(0) ≤ 5.00}, (26)

U = {u(k) ∈ R | 0.10 ≤ u(k) ≤ 1.10, ∀k ∈ N}. (27)

Fig. 4. Reachable set estimation using 5 and 20 partitions. The blue area corresponds
to the estimated reachable set using 5 partitions, the tighter green area corresponds
to the reachable set estimation using 20 partitions, and the red lines correspond to
200 randomly generated state trajectories, which all of them lie within the estimated
reachable set area.
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As is observed from Figure 4, all the randomly generated trajectories lie
within the estimated reachable set. Also, it can be noted that the area of the
reachable set estimation using a larger partition number, that is 20, represented
in green, it is smaller than the blue area, which corresponds to the reachable set
estimation using a lower partition number (M1 = M2 = 5) . This is especially
noticeable as the time k increases to 40–50, where the difference between the
blue region and green region increases as the lower limit of the state x(k) using
5 partitions keeps decreasing towards 0.6, while the lower limit of the green area
maintains a more steady line at 0.7 approximately.

Table 2. Computational time for different partition numbers

Partition Number Computation Time

M1 = M2 = 5 0.048700 seconds

M1 = M2 = 20 0.474227 seconds

In Table 2, the computational time has been recorded for each reachable
set estimation. It can be observed that the computational time increases as the
partition number increases. For this system, the computational time is approx-
imately 10 times greater when 20 partitions are used. This means that every
approach has its different advantages. For the cases when a more precise esti-
mation is needed, we can increase the number of partitions, while for the cases
when an larger over-approximation is enough, the number of partitions may be
decreased to reduce its computational cost.

The reachable set estimation for the NARMA neural network model (1) of
the Maglev Systems shows that all system responses to inputs are contained
within the reachable set. Thus, our over-approximation of the reachable states
is valid. Given a safety specification S and the reachable set calculated using
Algorithm 3, we are able to determine whether our system model satisfies S. In
our example, we did not perform a safety analysis but rather demonstrated the
robustness of Algorithm 3 in capturing a large number of possible predictions
of the NARMA network model (1). The magnet in our example was confined to
moving in one dimension. In magnetic levitation systems that are not physically
constrained to a set of axes, there are six degrees of freedom (three rotational and
three transnational) [5]. Thus, while we have demonstrated that our algorithm is
robust for two-dimensional systems, it will be good to demonstrate its efficacy on
higher dimensional systems. However, as the dimensionality and size of the neural
networks increases, the computation time needed to compute the reachable set
increases significantly as well.

7 Conclusions

This paper studies the reachable set estimation problem for neural network
NARMA models of nonlinear dynamic systems. By partitioning the input set
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into a finite number of cells, reachable set estimation for MLPs can be done for
each individual cells and get the union of output set of cells to form an over-
approximation of output set. Then, the reachable set estimation for NARMA
models can be performed by iterating the reachable set estimation process for
MLP step-by-step to establish an estimation of the state trajectories of a NARMA
model. Safety properties of NARMA models can then be verified by checking that
the intersection between the estimated reachable set and unsafe regions (sets)
is empty. The approach is demonstrated by a Maglev System, for which the
reachable set of its NARMA neural network model is estimated. The approach
is applicable for a variety of neural network models with different activation
functions. However, since the estimation is an over-approximation and error will
accumulate at each layer, much finer discretization for the input space is required
for deep neural networks that necessarily have large numbers of layers, which
will introduce a large computational effort, as otherwise the estimation results
will be too conservative to be useful. Reducing the conservativeness caused by
the increase of layers and generalizing it to deep neural networks will be a future
focus for our approach.

Acknowledgments. The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under grant numbers CNS
1464311, CNS 1713253, SHF 1527398, and SHF 1736323, the Air Force Re-
search Laboratory (AFRL) under contract numbers FA8750-15-1-0105, as well
as FA8650-12-3-7255 via subcontract number WBSC 7255 SOI VU 0001, and
the Air Force Office of Scientific Research (AFOSR) under contract numbers
FA9550-15-1-0258, FA9550-16-1-0246, and FA9550-18-1-0122. The U.S. govern-
ment is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of AFRL, AFOSR, or NSF

References

1. J. I. Baig and A. Mahmood. Robust control design of a magnetic levitation system.
In 2016 19th International Multi-Topic Conference (INMIC), pages 1–5, Dec 2016.

2. Stanley Bak and Parasara Sridhar Duggirala. HyLAA: A tool for computing
simulation-equivalent reachability for linear systems. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, pages 173–
178. ACM, 2017.

3. Stanley Bak and Parasara Sridhar Duggirala. Rigorous simulation-based analysis
of linear hybrid systems. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 555–572. Springer, 2017.

4. Mark Hudson Beale, Martin T. Hagan, and Howard B. Demuth. Neural network
toolbox users guide. In R2016a, The MathWorks, Inc., 3 Apple Hill Drive Natick,
MA 01760-2098, , www.mathworks.com, 2012.

5. Peter J. Berkelman and Ralph L. Hollis. Lorentz magnetic levitation for haptic
interaction: Device design, performance, and integration with physical simulations.
The International Journal of Robotics Research, 19(7):644–667, 2000.



Reachable Set Estimation and Verification for Neural Network Model 21

6. Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

7. R. J. Duffin. Free suspension and earnshaw’s theorem. Archive for Rational Me-
chanics and Analysis, 14(1):261–263, Jan 1963.

8. Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew
Potok. C2E2: a verification tool for stateflow models. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 68–
82. Springer, 2015.

9. Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Srid-
har Duggirala. Automatic reachability analysis for nonlinear hybrid models with
C2E2. In International Conference on Computer Aided Verification, pages 531–
538. Springer, 2016.

10. Shuzhi Sam Ge, Chang Chieh Hang, and Tao Zhang. Adaptive neural network
control of nonlinear systems by state and output feedback. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 29(6):818–828, 1999.

11. A. El Hajjaji and M. Ouladsine. Modeling and nonlinear control of magnetic
levitation systems. IEEE Transactions on Industrial Electronics, 48(4):831–838,
Aug 2001.

12. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

13. Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. arXiv preprint arXiv:1610.06940, 2016.
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